[TAOCP 1.2.1-8]习题8的证明

1. 我的方法

(a):

首先要把要证明的东西泛化,记$n^3$ = F(n)。通过观察n=3时的取值,1,3,5,7,9,11,13,F(3)是前6个奇数的和减去前3个奇数的和。

F(n)就是前n(n+1)/2个奇数的和,减去前(n-1)n/2个奇数的和。求前k个奇数的和比较简单,(1 + 2k - 1) k / 2 = $k^2$,这也是本节Eq(2)的结论。于是:

$F(n) = [n(n + 1) / 2]^2 - [(n - 1)n / 2]^2 = ((n^2) / 4) ((n + 1)^2 - (n - 1)^2) = ((n^2) / 4) 4n = n^3$

晕,这不转一圈又转回来,直接推导证明了吗。怎么用数学归纳法证明呢?没想出来,只好看答案。 

(b):

计算F(1) + F(2) + $\cdots$ + F(n - 1) + F(n)更简单了,有前后项抵消:

$1^3 + 2^3 + \cdots + n^3 = [n(n + 1) / 2]^2 - [(1 - 1)1 / 2]^2 = (n(n + 1) / 2)^2$

括号里是前n项求和公式,也得证。

2. 答案的方法

(a):

第一步仍是泛化,不过不是使用两列相减的方法,而试图找出F(n)中的第一项,进而写出F(n)的所有项。 F(n)的第一项是第(n - 1)n / 2 + 1个奇数,第k个奇数的值是2k - 1,所以F(n)中第一项是$(n - 1)n + 2 - 1 = n(n - 1) + 1 = n^2 - n + 1$ 。进而可得F(n)的最后一项是 $(n + 1)^2 - (n + 1) + 1 - 2 = n^2 + 2n + 1 - n - 2 = n^2 + n - 1$ 。所以F(n)就是这n个数的和:

$F(n) = (n^2 - n + 1) + \cdots + (n^2 + n - 1) = (n^2 - n + 1 + n^2 + n - 1) n / 2 = n^3$

又推导出来了。不过答案就是答案,又用了数学归纳法证明,其实就是只写出第一步的等式,不继续推导嘛。

n = 1时,F(1) = 1,成立。
n > 1时,F(n + 1) = $((n + 1)^2 - (n + 1) + 1) + \cdots + ((n + 1)^2 + (n + 1) - 1)$,注意这里是n + 1项了。

F(n + 1)中的每一项:$(n + 1)^2 - (n + 1) = n^2 + n$,都比F(n)中的对应项:$n^2 - n$,大2n,由此建立了F(n + 1)与F(n)的关系。

$F(n + 1) = F(n) + 2n * n + ((n + 1)^2 + (n + 1) - 1) = n^3 + 2n^2 + (n^2 + 3n + 1) = (n + 1)^3$

得证。

 (b):

$F(1) + \cdots + F(n)$ = 前n(n + 1) / 2个奇数的和 = $(n(n + 1) / 2)^2$ = $(1 + \cdots + n)^2$

再次使用了Eq.(2):前k个奇数的和是$k^2$。

3. (b)的图形化表示

令最小的正方形的边长为1,那么从中心向外,正方形的边长依次是:1,2,3,4,5。边长为n的那一圈,每边有n + 1个正方形。整个正方形的边长有两种表示方法:

(1) 以最外层计算,Side = n(n + 1)

(2) 从最外层开始,每层取一个正方形,依次向内计算,Side = 2(n + (n - 1) + $\cdots$ + 1)

整个正方形的面积不能使用边长平方的表示,因为那是最终等式的条件。面积采用累加所以小正方形面积的方法:

Area = $4 * n * n^2 + 4(n - 1)(n - 1)^2 + \cdots + 4*1 = 4(1^3 + 2^3 + \cdots + n^3)$

综上,我们等到了等价的两个等式:

$(n(n + 1))^2 = 4(1^3 + \cdots + n^3) \quad \rightarrow \quad  1^3 + 2^3 + \cdots + n^3 = (n(n + 1) / 2)^2$

$(2(1 + 2 + \cdots + n))^2 = 4(1^3 + \cdots + n^3) \quad \rightarrow \quad 1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$

转载于:https://www.cnblogs.com/dongxuenan/archive/2011/10/04/2213993.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值