[国家集训队] calc(动规+拉格朗日插值法)

题目

P4463 [国家集训队] calc
集训队的题目真是做不动呀\(\%>\_<\%\)

朴素方程

\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献,则有:
\[f_{i,j}=f_{i-1,j-1}*j+f{i,j-1}\]
由于递增序列可以全排列的:\(ans=f_{n,A}×n!\)
时间复杂度\(O(nA)\)

证明一

\(f_{i,j}\)为关于\(j\)\(2i\)次多项式,则\(f_{i-1,j-1}*j\)为关于\(j\)2i-1次多项式,\(f_{i,j-1}\)为关于\(j\)\(2i\)次多项式

通过归纳法证明出\(f_{i,j}\)为关于\(j\)\(2i\)次多项式

证明二

\(f_{i,j}\)为关于\(j\)\(g(i)\)次多项式,变式:
\[f_{i,j}-f(i,j-1)=f_{i-1,j-1}*j\]

则有\(g(i)-1=g(i-1)+1\longrightarrow g(i)=g(i-1)+2\),故\(f_{i,j}\)为关于\(j\)\(2i\)次多项式

具体做法

综上我们已经证明出了\(f_{i,j}\)为关于\(j\)\(2i\)次多项式,所以仅需\(2i\)项,通过拉格朗日插值法就能得出这个多项式的系数表示法,从而代入\(j=A\)求解即可

\((i,f_{n,i})\),就相当于多项式在坐标系上的一点,我们需要求出\(2n+1\)个点去确定多项式\(k_0~k_{2n}\)这些系数

Code

#include<bits/stdc++.h>
typedef int LL;
const LL maxn=2e3;
LL A,n,mod,N;
LL y[maxn],f[maxn][maxn];
inline LL Pow(LL base,LL b){
    LL ret(1);
    while(b){
        if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
    }return ret;
}
inline LL Calc(LL x){
    LL ret(0);
    for(LL i=1;i<=N;++i){
        LL p(y[i]),q(1);
        for(LL j=1;j<=N;++j){
            if(j!=i){
                p=1ll*p*(x-j+mod)%mod;
                q=1ll*q*(i-j+mod)%mod;
            }
        }
        ret=(ret+1ll*p*Pow(q,mod-2)%mod)%mod;
    }
    return ret;
}
int main(){
    scanf("%d%d%d",&A,&n,&mod);
    N=(n<<1)+1;
    for(LL i=0;i<=N;++i) f[0][i]=1;
    for(LL i=1;i<=n;++i)
        for(LL j=1;j<=N;++j)
            f[i][j]=(1ll*f[i-1][j-1]*j%mod+f[i][j-1])%mod;
    LL C(1);
    for(LL i=2;i<=n;++i) C=1ll*C*i%mod;
    for(LL i=1;i<=N;++i) y[i]=f[n][i];
    if(A<=N)
        printf("%d",1ll*f[n][A]*C%mod);
    else
        printf("%d",1ll*Calc(A)*C%mod);
    return 0;
}

转载于:https://www.cnblogs.com/y2823774827y/p/10724483.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值