[BZOJ4416][SHOI2013]阶乘字符串(子集DP)

怎么也没想到是子集DP,想到了应该就没什么难度了。

首先n>21时必定为NO。

g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出。

f[S]表示S的所有全排列子序列出现的最后末尾位置,枚举最后一个字母转移。21*2^21

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define rep(i,l,r) for (int i=(l); i<=(r); i++)
 5 using namespace std;
 6 
 7 int T,n,m,k,t,g[500][26],f[1<<21];
 8 char a[500];
 9 
10 int main(){
11     freopen("bzoj4416.in","r",stdin);
12     freopen("bzoj4416.out","w",stdout);
13     scanf("%d",&T);
14     while(T--){
15         scanf("%d%s",&n,a+1); m=strlen(a+1);
16         if (n>21){ puts("NO"); continue; }
17         rep(j,0,n-1) g[m][j]=g[m+1][j]=m+1;
18         for(int i=m; i; i--){
19             rep(j,0,n-1) g[i-1][j]=g[i][j];
20             g[i-1][a[i]-'a']=i;
21         }
22         rep(i,1,(1<<n)-1){
23             int res=0;
24             for(int j=i; j; j-=j&-j)
25                 k=__builtin_ctz(j),res=max(res,g[f[i^(1<<k)]][k]);//ctz统计末尾0的个数
26             f[i]=res;
27         }
28         puts(f[(1<<n)-1]>m ? "NO" : "YES");
29     }
30     return 0;
31 }

 

转载于:https://www.cnblogs.com/HocRiser/p/10053072.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值