快速荷叶叶变换

cINEAAAAASUVORK5CYII=

可以参考 此博客

我们把 \(\sum\limits^{N}_{i=1}\sum\limits^{M}_{j=1}\ (N\mod i)*(M\mod j)\),变成\(\sum\limits^{N}_{i=1}\ (N\mod i)*\sum\limits^{M}_{j=1}(M\mod j)\),就有了 \(O(n)\)的方法。

然后 \(N,M \leq 10^9\),显然超时。

我们再把 \(\sum\limits^{N}_{i=1}\ (N\mod i)\) 变成 \(\sum\limits^{N}_{i=1}\ N- \left\lfloor\dfrac{N}{i}\right\rfloor*i\)

其中的 \(\sum\limits^{N}_{i=1}\ \left\lfloor\dfrac{N}{i}\right\rfloor\)因为是下取整,所以有很多重复的数字出现。这样子我们就有了一种 \(O(\sqrt N)\) 的方法(数论分块)。

\(10\) 来说。

\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)
\(10\)\(5\)\(3\)\(2\)\(2\)\(1\)\(1\)\(1\)\(1\)\(1\)

每一段的右端点就是 \(\left\lfloor\dfrac{N}{\left\lfloor\dfrac{N}{i}\right\rfloor}\right\rfloor\)。也就是 \(N\div(N\div i)\)

然后每一段再乘以一个 \(i\) 什么之类的,最后用 \(N^2\) 减掉就可以了。

const number=1000000007;

var
    n,m:int64;

function sum(n:longint):int64;
var
    i,right,num:int64;
begin
    sum:=0; i:=1;
    while i<=n do
    begin
        num:=n div i; right:=n div num;
        sum:=sum mod number;
        inc(sum,num*((i+right)*(right-i+1) div 2));
        i:=right+1;
    end;
end;

begin
        read(n,m);
        n:=(((n*n) mod number)-sum(n)) mod number;
        m:=(((m*m) mod number)-sum(m)) mod number;
        writeln((n*m) mod number);
end.

转载于:https://www.cnblogs.com/FibonacciHeap/articles/9692864.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值