O(1)时间复杂度实现入栈、出栈、获得栈中最小元素、获得栈中最大元素(转)

题目要求:定义栈的数据结构,添加min()、max()函数(动态获取当前状态栈中的最小元素、最大元素),要求push()、pop()、min()、max()的时间复杂度都是O(1)。

思路解析:根据栈的后进先出特性,增加辅助栈,来存储当前状态下数据栈中的最小、最大元素。

原文:http://blog.csdn.net/happy309best/article/details/47725935

class Solution:
    def __init__(self):
        self.data=[]
        self.min_data=[]
    def push(self, node):
        self.data.append(node)
        if len(self.min_data)==0 or node<=self.min_data[len(self.min_data)-1]:
            self.min_data.append(node)
    def pop(self):
        if len(self.data)>0:
            val=self.data.pop()
            if val==self.min_data[len(self.min_data)-1]:
                self.min_data.pop()
            return val
    def top(self):
        if len(self.data)>0:
            return self.data[len(self.data)-1]
        return None
    def min(self):
        if len(self.min_data)>0:
            return self.min_data[len(self.min_data)-1]
        return None

 

转载于:https://www.cnblogs.com/gczr/p/7124502.html

在C++中,如果我们想要实现一个支持快速查找最小元素时间复杂度为 O(1))的,通常我们会采用一种数据结构叫做“最小堆”(Min-Heap)。由于在堆中,父节点的键值总是小于或等于其子节点的键值,所以最小堆的根节点总是最小元素。 这里是一个使用 `std::priority_queue`(最小优先队列)实现类,该容器内部已经实现了 O(1) 的最小元素查找: ```cpp #include <queue> #include <climits> template <typename T> class MinStack { private: std::priority_queue<T> minHeap; std::stack<T> stack; public: // 初始化 MinStack() {} // 入栈 void push(T x) { stack.push(x); if (minHeap.empty() || x <= minHeap.top()) { minHeap.push(x); } } // 出栈 void pop() { if (!stack.empty()) { if (stack.top() == minHeap.top()) { minHeap.pop(); } stack.pop(); } } // 查找最小元素 T top() const { return minHeap.top(); } // 返回当前栈中最小元素 T getMin() const { return minHeap.top(); } }; ``` 在这个实现中,`push` 方法会同时将新元素加入到普通最小堆中,而`pop`方法会在普通出栈的同时判断当前顶是否就是最小堆的根,如果是则从最小堆中移除。这样每次操作的时间复杂度都是 O(log n),但在查找最小元素时,因为堆的数据结构特性,`getMin` 方法的时间复杂度是 O(1)。 请注意,虽然 `getMin` 在平均情况下的时间复杂度是 O(1),但整个的操作仍然受限于堆的操作,即在最坏情况下(如频繁出栈入栈),整体的时间复杂度仍然是 O(n log n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值