【loj2064】找相同字符

Portal --> loj2064

Solution

  这里是用后缀数组做的版本!(晚点再用Sam写一遍qwq)

​  首先一个字符串的子串其实就是这个字符串某个后缀的前缀,所以我们有一个十分简单粗暴的想法直接把两个串接起来(常用套路:中间加一个最大的字符作为分隔符)然后求Sa,求完之后我们就可以十分愉快地获得一个\(O(n^2)\)的算法了(每次枚举两个后缀,然后经过预处理之后我们可以用ST表\(O(1)\)求得lcp,答案显然就是这堆lcp之和)

  然而\(O(n^2)\)十分不优秀,这里我们可以反过来想每一个\(height[i]\)可以在哪一个范围内作为最小值,具体的话我们可以用递归来实现

  为了方便表示,我们记\(cnt1[i]\)表示排名前\(i\)的后缀中,属于第一个串的后缀数量,\(cnt2[i]\)表示排名前\(i\)的后缀中,属于第二个串的后缀数量

  记\(solve(l,r)\)表示处理\(rk\)\(\in [l,r]\)的这堆后缀对答案的贡献,我们可以用ST表求的这个区间内的\(height\)最小值为\(x\),然后我们记这个最小值的位置为\(mid\),那么这个区间内长度为\(x\)的取法对答案的贡献就是
\[ \begin{aligned} x&*((cnt1[mid-1]-cnt1[l-1])*(cnt2[r]-cnt2[mid-1])+(cnt2[mid-1]-cnt2[l-1])*(cnt1[r]-cnt1[mid-1])) \end{aligned} \]

  然后接着我们直接递归处理\([l,mid-1]\)区间和\([mid,r]\)区间就好了(其实好像区间这个加减的东西可以自己调整一下。。不过相对应的上面的式子中\(cnt1\)\(cnt2\)的范围也需要稍微调整一下,都是具体实现个人习惯的问题)

  注意答案可能比较大所以需要用long long

  

  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define ll long long
#define Pr pair<int,int>
#define mp make_pair
using namespace std;
const int N=200010,SA=N*2,TOP=20;
char s1[N],s2[N],s[N*2];
int n1,n2,n;
ll ans;
namespace Sa{/*{{{*/
    int a[SA],b[SA],c[SA],sa[SA],rk[SA],height[SA];
    int mn[SA][TOP+1],loc[SA][TOP+1];
    int cnt1[SA],cnt2[SA];
    int mx;
    bool cmp(int x,int y,int len,int *r)
    {return r[x]==r[y]&&r[x+len]==r[y+len];}
    void sort(int n){
        for (int i=0;i<=mx;++i) c[i]=0;
        for (int i=1;i<=n;++i) ++c[a[b[i]]];
        for (int i=1;i<=mx;++i) c[i]+=c[i-1];
        for (int i=n;i>=1;--i) sa[c[a[b[i]]]--]=b[i];
    }
    void get_sa(int n){
        mx=0;
        for (int i=1;i<=n;++i) a[i]=s[i]-'a'+1,mx=max(mx,a[i]),b[i]=i;
        sort(n);
        int cnt=0;
        for (int len=1;cnt<n;len<<=1){
            cnt=0;
            for (int i=n-len+1;i<=n;++i) b[++cnt]=i;
            for (int i=1;i<=n;++i)
                if (sa[i]>len)
                    b[++cnt]=sa[i]-len;
            sort(n);
            swap(a,b);
            cnt=1; a[sa[1]]=1;
            for (int i=2;i<=n;a[sa[i++]]=cnt)
                if (!cmp(sa[i],sa[i-1],len,b)) ++cnt;
            mx=cnt;
        }
    }
    void rmq(int n){
        for (int i=1;i<=n;++i) mn[i][0]=height[i],loc[i][0]=i;
        for (int j=1;(1<<j)<=n;++j)
            for (int i=n-(1<<j)+1;i>=1;--i){
                if (mn[i][j-1]<mn[i+(1<<j-1)][j-1])
                    mn[i][j]=mn[i][j-1],loc[i][j]=loc[i][j-1];
                else
                    mn[i][j]=mn[i+(1<<j-1)][j-1],loc[i][j]=loc[i+(1<<j-1)][j-1];
            }
    }
    void get_height(int n){
        for (int i=1;i<=n;++i) rk[sa[i]]=i;
        int k=0;
        for (int i=1;i<=n;++i){
            if (k) --k;
            while (s[i+k]==s[sa[rk[i]-1]+k]) ++k;
            height[rk[i]]=k;
        }
        rmq(n);
    }
    Pr Lcp(int x,int y){//x y are ranks
        if (x==y) return mp(n-sa[x]+1,x);
        ++x;
        if (x>y) swap(x,y);
        int len=y-x+1,lg=(int)(log(1.0*len)/log(2.0));
        if (mn[x][lg]<mn[y-(1<<lg)+1][lg]) return mp(mn[x][lg],loc[x][lg]);
        return mp(mn[y-(1<<lg)+1][lg],loc[y-(1<<lg)+1][lg]);
    }
    void pre_calc(int n,int n1){
        for (int i=1;i<=n;++i){
            cnt1[i]=cnt1[i-1];
            cnt2[i]=cnt2[i-1];
            if (sa[i]<n1) ++cnt1[i];
            else if (sa[i]>n1) ++cnt2[i];
        }
    }
    void get_ans(int l,int r){
        if (l>=r) return;
        Pr tmp=Lcp(l,r);
        int mid=tmp.second,lcp=tmp.first;
        ans+=1LL*lcp*(1LL*(cnt1[mid-1]-cnt1[l-1])*(cnt2[r]-cnt2[mid-1])+1LL*(cnt2[mid-1]-cnt2[l-1])*(cnt1[r]-cnt1[mid-1]));
        get_ans(l,mid-1);
        get_ans(mid,r);
    }
}/*}}}*/

int main(){
#ifndef ONLINE_JUDGE
    freopen("a.in","r",stdin);
#endif
    scanf("%s\n%s",&s1,&s2);
    n1=strlen(s1);
    n2=strlen(s2);
    n=0;
    for (int i=0;i<n1;++i) s[++n]=s1[i];
    s[++n]='z'+1;
    for (int i=0;i<n2;++i) s[++n]=s2[i];
    Sa::get_sa(n);
    Sa::get_height(n);
    Sa::pre_calc(n,n1+1);
    ans=0;
    Sa::get_ans(1,n);
    printf("%lld\n",ans);
}

转载于:https://www.cnblogs.com/yoyoball/p/9368564.html

springboot003基于Springboot+Vue的图书个性化推荐系统的设计与实现毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值