Climbing Stairs - LeetCode

题目链接

Climbing Stairs - LeetCode

注意点

  • 注意边界条件

解法

解法一:这道题是一题非常经典的DP题(拥有非常明显的重叠子结构)。爬到n阶台阶有两种方法:1. 从n-1阶爬上 2. 从n-2阶爬上。很容易得出递推式:f(n) = f(n-1)+f(n-2)于是可以得到下面这种最简单效率也最低的解法 —— 递归。

class Solution {
public:
    int climbStairs(int n) {
        if(n == 0 || n == 1 || n == 2)
        {
            return n;
        }
        return climbStairs(n-1)+climbStairs(n-2);
    }
};

874b0eb1gy1g04rebxzlsj215l09rwen.jpg

解法二:思路不变,改为更高效的写法 —— 迭代。时间复杂度O(n)。

class Solution {
public:
    int climbStairs(int n) {
        vector<int> ans;
        int i;
        for(i = 0;i <= 2;i++)
        {
            ans.push_back(i);
        }
        for(i = 3;i <= n;i++)
        {
            ans.push_back(ans[i-1]+ans[i-2]);
        }
        return ans[n];
    }
};

874b0eb1gy1g04rkq80idj21740k50tq.jpg

解法三:继续优化,可以看出解法二中需要开一个额外的数组来保存过程中计算的值,这些值计算完之后就没用了,所以改用两个变量来替代。时间复杂度O(n),空间复杂度O(1)

class Solution {
public:
    int climbStairs(int n) {
        if(n == 0||n == 1||n == 2)
        {
            return n;
        }
        int a = 2,b = 1,i;
        for(i = 0;i < n-2;i++)
        {
            a = a+b;
            b = a-b;
        }
        return a;
    }
};

或者一个更好理解的

class Solution {
public:
    int climbStairs(int n) {
        if(n == 0||n == 1||n == 2)
        {
            return n;
        }
        int a = 2,b = 1,ret,i;
        for(i = 0;i < n-2;i++)
        {
            ret = a+b;
            b = a;
            a = ret;
        }
        return ret;
        
    }
};

874b0eb1gy1g04rn9ay0zj21830kb3zi.jpg

小结

  • 这道题可以扩展到每次可以走k步,那递推式就变为f(n) = f(n-1) + f(n-2) + ... + f(n-k)

转载于:https://www.cnblogs.com/multhree/p/10369596.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值