不知道哪里错了,测试了几十组数据均正确。。。
可以找出规律,指数的增长是兔子数列。这个数列,是可以用矩阵快速幂得到的,见POJ 3070
然后,竟然有一条公式:
A^B%C = A^(B%phi(C)+phi(C))%C
然后就可以求解了
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
struct Matrax {
long long m[2][2];
};
Matrax at,per;
long long M;
void initial(){
long long i,j;
for(i=0;i<2;i++)
for(j=0;j<2;j++)
per.m[i][j]=(i==j);
at.m[0][0]=at.m[0][1]=at.m[1][0]=1;
at.m[1][1]=0;
}
Matrax multi(Matrax a,Matrax b){
Matrax c;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
c.m[i][j]=0;
for(int k=0;k<2;k++)
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%M;
c.m[i][j]%=M;
}
}
return c;
}
long long Power(int k){
Matrax c,p,ans=per;
p=at;
while(k){
if(k&1){
ans=multi(ans,p);
k--;
}
else{
k/=2;
p=multi(p,p);
}
}
return ans.m[1][0]%M;
}
long long Euler(long long n){
long long rea=n;
for(long long i=2;i*i<=n;i++){
if(n%i==0){
rea=rea-rea/i;
do{
n/=i;
}while(n%i==0);
}
}
if(n>1)
rea=rea-rea/n;
return rea;
}
long long quick(long long a,long long b,long long m){
long long ans=1;
a%=m;
while(b){
if(b&1){
ans=(ans*a)%m;
}
b>>=1;
a=(a*a)%m;
}
return ans;
}
int main ( ){
long long a,b,n,p;
int t;
int kase=0;
scanf("%d",&t);
initial();
while(t--){
cin>>a>>b>>p>>n;
/* if(a==0&&b==0){
printf("Case #%d: 0\n",++kase);
continue;
}*/
M=Euler(p);
long long bs,as;
if(n==1){
bs=0%M; as=1%M;
}
else if(n==2){
bs=1%M; as=0%M;
}
else{
bs=Power(n-1)%M;
as=Power(n-2)%M;
}
long long tb=quick(b,bs+M,p)%p;
long long ta=quick(a,as+M,p)%p;
printf("Case #%d: %lld\n",++kase,(tb*ta)%p);
}
return 0;
}
COPY 别人的代码粘在这里
#include <stdio.h>
#define MAXN 1000002
typedef struct
{
long long m[2][2];
}Matrix;
int mod;
int a,b;
int phi[MAXN+5];
int fib[50];
void PHI()
{
int i,k;
for (i=2;i<MAXN;i++)
{
phi[i]=i;
}
for (i=2;i<MAXN;i++)
{
if (phi[i]!=i) continue;
k=1;
while(k*i<MAXN)
{
phi[i*k]=phi[i*k]/i*(i-1);
k++;
}
}
}
long long Fpow(long long t,int n)
{
long long ret=1;
while(n)
{
if (n&1) ret=(ret*t)%mod;
n>>=1;
t=(t*t)%mod;
}
return ret;
}
Matrix Mul(Matrix a,Matrix b,int p)
{
int i,j,k;
Matrix c;
for (i=0;i<2;i++)
{
for (j=0;j<2;j++)
{
c.m[i][j]=0;
for (k=0;k<2;k++)
{
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%p;
}
}
}
return c;
}
long long CountFib(int n,int p)
{
int i;
Matrix a,b;
a.m[0][0]=a.m[0][1]=a.m[1][0]=b.m[0][0]=1;
a.m[1][1]=b.m[1][0]=0;
while(n)
{
if (n&1) b=Mul(a,b,p);
a=Mul(a,a,p);
n>>=1;
}
return b.m[0][0];
}
long long Power(int t,int n)
{
int i;
int p=phi[mod];
fib[0]=fib[1]=1;
for (i=2;i<=n;i++)
{
fib[i]=fib[i-1]+fib[i-2];
if (fib[i]>=p) break;
}
if (i>n)
{
return Fpow(t,fib[n]);
}
int f=CountFib(n,p)+p;
return Fpow(t,f);
}
int main()
{
int i,j,cnt=1,T,n;
long long ans;
PHI();
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d",&a,&b,&mod,&n);
printf("Case #%d: ",cnt++);
if (n==1)
{
printf("%d\n",a%mod);
continue;
}
if (n==2)
{
printf("%d\n",b%mod);
continue;
}
if (a==0 || b==0)
{
printf("0\n");
continue;
}
if (mod==1)
{
printf("0\n");
continue;
}
ans=(Power(a,n-3)*Power(b,n-2))%mod;
printf("%I64d\n",ans);
}
return 0;
}