我们设 \(f[i][j]\) 表示前 \(i\) 位划分为 \(j\) 段的答案,在此基础上再添加一维,\(0\) 表示没有选 \(a[i]\),\(1\) 表示选了\(a[i]\)。
考虑到第 \(i\) 为的答案只能由第 \(i-1\) 位转移过来,因此可以倒叙枚举 \(j\),压掉第 \(1\) 维,用滚动数组转移。
#include<bits/stdc++.h>
#define LL long long
const int N=5001;
using namespace std;
int n,m,a[N],totpi;
LL sumpi,f[N][2];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
if(a[i]>0) sumpi+=a[i],totpi++;
}
if(m>=totpi) {printf("%lld\n",sumpi);return 0;}
for(int i=1;i<=n;++i)
for(int j=min(i,m);j>=1;--j)
{
// f[i][j][1]=max(f[i-1][j-1][0]+a[i],f[i-1][j][1]+a[i]);
// f[i][j][0]=max(f[i-1][j][1],f[i-1][j][0]);
f[j][1]=max(f[j-1][0]+a[i],f[j][1]+a[i]);
f[j][0]=max(f[j][1],f[j][0]);
}
printf("%lld\n",max(f[m][0],f[m][1]));
return 0;
}