两种情况下不走map-reduce:
1. where ds >' ' //ds 是partition
2. select * from table //后面没有查询条件,什么都没有
1.建表
CREATE TABLE sal(
id INT,
name STRING,
salary INT
)
partitioned by (city string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;
1.1 修改表及属性
#把id,name以外的列删除
alter table sal replace columns (id int, name string);
#增加列
alter table sal add columns (remark string);
#修改column
ALTER TABLE table_name
CHANGE col_old_name col_new_name
column_type;
ALTER TABLE sal CHANGE remark city string;
2.导入数据
load data local inpath '/home/hadoop/in/mytable' overwrite into table sal;
1 zuansun 3000 none
2 zuansu2 4000 none
3 zuansu3 3000 none
4 zuansu4 4000 none
5 zuansu5 3000 none
6 zuansu6 4000 none
7 zuansu7 3000 none
8 zuansu8 4000 none
9 zuansu9 10000 none
10 zuansu10 20000 none
11 zuansu11 15000 none
12 zuansu12 25000 none
3.嵌套查询
from (select * from sal) e select e.id,e.name,e.salary where e.salary>3000;
#case when
select id,name,
case
when salary<10000 then '屌丝'
when salary>=10000 and salary<20000 then '中下等'
when salary>=20000 and salary<50000 then '高帅富'
else '外星人'
end as salarylevel
from sal;
4.group by
select remark,sum(salary) from sal group by remark;
5.动态分区
5.1 创建临时表
CREATE TABLE sal_tmp(
id INT,
name STRING,
salary INT,
city string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;
5.2将数据导入到临时表中
load data local inpath '/home/hadoop/in/mytable' overwrite into table sal_tmp;
5.3 操作的配置
set hive.exec.dynamic.partition=true; // 允许动态分区
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partitions.pernode=50000;
set hive.exec.dynamic.partitions.partitions=50000;
set hive.exec.max.created.files=500000;
set mapred.reduce.tasks =20000; //每个任务默认的reduce数目
set hive.merge.mapfiles=true; //在Map-only的任务结束时合并小文件
5.4附partition相关参数:
hive.exec.dynamic.partition(缺省false): 设置为true允许使用dynamic partitionhive.exec.dynamic.partition.mode(缺省strick):设置dynamic partition模式(nostrict允许所有partition列都为dynamic partition,strict不允许)
hive.exec.max.dynamic.partitions.pernode (缺省100):每一个mapreduce job允许创建的分区的最大数量,如果超过了这个数量就会报错
hive.exec.max.dynamic.partitions (缺省1000):一个dml语句允许创建的所有分区的最大数量
hive.exec.max.created.files (缺省100000):所有的mapreduce job允许创建的文件的最大数量
5.5
insert into table sal partition (city) select * from sal_tmp;
6. join操作
#建表
create table a(id int,gender string)
row format delimited fields terminated by '\t' stored as textfile;
#加载数据
load data local inpath '/home/hadoop/in/a' overwrite into table a;
#内连接查询
select sal.id,sal.name,sal.salary,sal.city,a.gender from sal join a on(sal.id=a.id);
#左外连接查询
select sal.id,sal.name,sal.salary,sal.city,a.gender from sal left outer join a on(sal.id=a.id);
7.创建索引
create index a_index on table a(id) AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' WITH DEFERRED REBUILD ;
8.桶
#临时表
create table tb_tmp(id int,age int, name string ,timeflag bigint) row format delimited fields terminated by ',';
#带桶的表,4个桶
create table tb_stu(id int,age int, name string,timeflag bigint) clustered by (id) sorted by (age) into 4 buckets row format delimited fields terminated by ',';
#加载数据到临时表
load data local inpath '/home/hadoop/in/tb_tmp' overwrite into table tb_tmp;
1,20,zxm,20140330
2,21,ljz,20140330
3,19,cds,20140330
4,18,mac,20140330
5,22,android,20140330
6,23,symbian,20140330
7,25,wp,20140330
8,20,cxd,20140330
9,21,fvd,20140330
10,19,cvb,20140330
11,18,erd,20140330
12,22,nid,20140330
13,23,fvd,20140330
14,19,cvb,20140330
15,18,e33,20140330
16,22,nid,20140330
#设置执行桶的属性
set hive.enforce.bucketing = true;
#插入到tb_stu表
insert into table tb_stu select * from tb_tmp;
#抽样
select * from tb_stu tablesample(bucket 1 out of 4 on id);
注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y),相当于以下语句:
SELECT * FROM numbersflat WHERE number % y = x-1;
9.RCfile
#rcfile 格式表
create table tb_rc(id int,age int, name string ,timeflag bigint) row format delimited fields terminated by ',' stored as rcfile;
#插入数据,上表中已经有tb_tmp表,所以直接插入数据即可
insert into table tb_rc select * from tb_tmp;
10.分隔符的多样化(配合正则表达式使用)
#cat /tmp/liuxiaowen/1.txt
000377201207221125^^APPLE IPHONE 4S^^2
132288201210331629^^THINKING IN JAVA^^1
132288201210331629^^THIN ssss^^1111
132288201210331629^^THdd dd ddJAVA^^10
add jar /opt/app/hive-0.7.0-rc1/lib/hive-contrib-0.7.0.jar ;
create external table tt(times string,
product_name string,
sale_num string
) ROW FORMAT
SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES
( 'input.regex' = '([^^]*)\\^\\^([^^]*)\\^\\^([^^]*)',
'output.format.string' = '%1$s %2$s %3$s')
STORED AS TEXTFILE;
load data local inpath '/home/hadoop/in/tt' overwrite into table tt;
hive> select product_name from tt;
APPLE IPHONE 4S
THINKING IN JAVA
THIN ssss
THdd dd ddJAVA
11.更加复杂的数据类型
11.1 array
cat login_array.txt
192.168.1.1,3105007010|3105007011|3105007012
192.168.1.2,3105007020|3105007021|3105007022
CREATE TABLE login_array (
ip STRING,
uid array<BIGINT>
)
PARTITIONED BY (dt STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '|'
STORED AS TEXTFILE;
加载数据到hive表
LOAD DATA LOCAL INPATH '/home/hadoop/in/login_array' OVERWRITE INTO TABLE login_array PARTITION (dt='20130101');
#查看数据
select * from login_array;
192.168.1.1 [3105007010,3105007011,3105007012] 20130101
192.168.1.2 [3105007020,3105007021,3105007022] 20130101
select ip,uid[0] from login_array where dt='20130101'; --使用下标访问数组
192.168.1.1 3105007010
192.168.1.2 3105007020
select ip,size(uid) from login_array where dt='20130101'; #查看数组长度
192.168.1.1 3
192.168.1.2 3
select * from login_array where array_contains(uid,3105007010);#数组查找
192.168.1.1 [3105007010,3105007011,3105007012] 20130101
11.2 使用Map
cat map_test_raw:
2014-03-03 12:22:34#127.0.0.1#get#amap#src=123&code=456&cookie=789#status=success&time=2s
2014-03-03 11:22:34#127.0.0.1#get#autonavi#src=123&code=456#status=success&time=2s&cookie=789
#创建表
create external table map_test_raw(ts String,ip String,type String,logtype String,request Map<String,String>,response Map<String,String>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '#'
COLLECTION ITEMS TERMINATED BY '&'
MAP KEYS TERMINATED BY '='
stored as textfile;
LOAD DATA LOCAL INPATH '/home/hadoop/in/map_test_raw' OVERWRITE INTO TABLE map_test_raw;
#查看数据
select * from map_test_raw;
2014-03-03 12:22:34 127.0.0.1 get amap {"src":"123","code":"456","cookie":"789"} {"status":"success","time":"2s"}
2014-03-03 11:22:34 127.0.0.1 get autonavi {"src":"123","code":"456"} {"status":"success","time":"2s","cookie":"789"}
11.3 使用struct
# cat login_struct.txt
192.168.1.1,zhangsan:40
192.168.1.1,lisi:41
192.168.1.1,gavin:42
192.168.1.1,wangwu:43
192.168.1.1,xiaoming:44
192.168.1.1,xiaojun:45
# 建表
CREATE TABLE login_struct (
ip STRING,
user struct<name:string,age:int>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY ':'
STORED AS TEXTFILE;
#导入数据
LOAD DATA LOCAL INPATH '/home/hadoop/in/login_struct' OVERWRITE INTO TABLE login_struct;
#查看数据
select ip,user from login_struct;
192.168.1.1 {"name":"zhangsan","age":40}
192.168.1.1 {"name":"lisi","age":41}
192.168.1.1 {"name":"gavin","age":42}
192.168.1.1 {"name":"wangwu","age":43}
192.168.1.1 {"name":"xiaoming","age":44}
192.168.1.1 {"name":"xiaojun","age":45}
版权声明:本文为博主原创文章,未经博主允许不得转载。