[BZOJ3694]最短路

Description
给出一个n个点m条边的无向图,n个点的编号从1~n,定义源点为1。定义最短路树如下:从源点1经过边集T到任意一点i有且仅有一条路径,且这条路径是整个图1到i的最短路径,边集T构成最短路树。 给出最短路树,求对于除了源点1外的每个点i,求最短路,要求不经过给出的最短路树上的1到i的路径的最后一条边。

Input
第一行包含两个数n和m,表示图中有n个点和m条边。接下来m行,每行有四个数ai,bi,li,ti,表示图中第i条边连接ai和bi权值为li,ti为1表示这条边是最短路树上的边,ti为0表示不是最短路树上的边。
n≤4000,m≤100000,1≤li≤100000

Output
输出n-1个数,第i个数表示从1到i+1的要求的最短路。无法到达输出-1。

Sample Input
5 9
3 1 3 1
1 4 2 1
2 1 6 0
2 3 4 0
5 2 3 0
3 2 2 1
5 3 1 1
3 5 2 0
4 5 4 0

Sample Output
6 7 8 5


对于这题我们先枚举非树边\((u,v)\),那么肯定会对u,v上面,lca下面的点产生贡献

对于一个点t,那么我们的路径就变成了\(1\rightarrow lca\rightarrow u\rightarrow v\rightarrow t\)或者为\(1\rightarrow lca\rightarrow v\rightarrow u\rightarrow t\),但其实两种答案都是一样的,\(dis[u]+dis[v]+w(u,v)-dis[t]\),由于dis[t]可以最后减,我们就维护\(dis[u]+dis[v]+w(u,v)\)即可

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
    int x=0,f=1;char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())    x=(x<<1)+(x<<3)+ch-'0';
    return x*f;
}
inline void print(int x){
    if (x>=10)  print(x/10);
    putchar(x%10+'0');
}
const int N=4e3,M=1e5;
int n,m;
struct Segment{
    #define ls (p<<1)
    #define rs (p<<1|1)
    int tree[(N<<2)+10],Lazy[(N<<2)+10];
    Segment(){
        memset(tree,127,sizeof(tree));
        memset(Lazy,127,sizeof(Lazy));
    }
    void Add_Min(int p,int v){
        tree[p]=min(tree[p],v);
        Lazy[p]=min(Lazy[p],v);
    }
    void pushdown(int p){
        if (Lazy[p]==inf)   return;
        Add_Min(ls,Lazy[p]);
        Add_Min(rs,Lazy[p]);
        Lazy[p]=inf;
    }
    void Modify(int p,int l,int r,int x,int y,int v){
        if (x<=l&&r<=y){
            Add_Min(p,v);
            return;
        }
        pushdown(p);
        int mid=(l+r)>>1;
        if (x<=mid) Modify(ls,l,mid,x,y,v);
        if (y>mid)  Modify(rs,mid+1,r,x,y,v);
        tree[p]=min(tree[ls],tree[rs]);
    }
    int Query(int p,int l,int r,int x){
        if (l==r)   return tree[p];
        pushdown(p);
        int mid=(l+r)>>1;
        if (x<=mid) return Query(ls,l,mid,x);
        else    return Query(rs,mid+1,r,x);
    }
}Tree;
struct S1{
    int pre[(N<<1)+10],now[N+10],child[(N<<1)+10],val[(N<<1)+10];
    int top[N+10],size[N+10],deep[N+10],fa[N+10],Rem[N+10],dis[N+10],ID[N+10];
    int tot,Time;
    void join(int x,int y,int z){pre[++tot]=now[x],now[x]=tot,child[tot]=y,val[tot]=z;}
    void insert(int x,int y,int z){join(x,y,z),join(y,x,z);}
    void dfs(int x){
        deep[x]=deep[fa[x]]+1,size[x]=1;
        for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
            if (son==fa[x]) continue;
            fa[son]=x,dis[son]+=dis[x]+val[p];
            dfs(son),size[x]+=size[son];
            if (size[Rem[x]]<size[son]) Rem[x]=son;
        }
    }
    void build(int x){
        if (!x) return;
        ID[x]=++Time;
        top[x]=Rem[fa[x]]==x?top[fa[x]]:x;
        build(Rem[x]);
        for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
            if (son==fa[x]||son==Rem[x])    continue;
            build(son);
        }
    }
    void work(int x,int y,int z){
        int tmp=dis[x]+dis[y]+z;
        while (top[x]!=top[y]){
            if (deep[top[x]]<deep[top[y]])  swap(x,y);
            Tree.Modify(1,1,n,ID[top[x]],ID[x],tmp);
            x=fa[top[x]];
        }
        if (x==y)   return;
        if (deep[x]>deep[y])    swap(x,y);
        Tree.Modify(1,1,n,ID[Rem[x]],ID[y],tmp);
    }
}T;
struct S2{
    int x,y,z;
    void insert(int _x,int _y,int _z){x=_x,y=_y,z=_z;}
}A[M+10];
int main(){
    n=read(),m=read();
    int tot=0;
    for (int i=1;i<=m;i++){
        int x=read(),y=read(),z=read(),t=read();
        t?T.insert(x,y,z):A[++tot].insert(x,y,z);
    }
    T.dfs(1),T.build(1);
    for (int i=1;i<=tot;i++)    T.work(A[i].x,A[i].y,A[i].z);
    for (int i=2;i<=n;i++){
        int Tmp=Tree.Query(1,1,n,T.ID[i]);
        printf("%d",Tmp==inf?-1:Tmp-T.dis[i]);
        i==n?putchar('\n'):putchar(' ');
    }
    return 0;
}

转载于:https://www.cnblogs.com/Wolfycz/p/9744861.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值