这篇文章主要介绍了C#中的递归APS和CPS模式详解,本文讲解了累加器传递模式、CPS函数、CPS变换、CPS尾递归、尾递归与Continuation等内容,需要的朋友可以参考下
累加器传递模式(Accumulator passing style)
尾递归优化在于使堆栈可以不用保存上一次的返回地址/状态值,从而把递归函数当成一个普通的函数调用。
递归实际上是依赖上次的值,去求下次的值。 如果我们能把上次的值保存起来,在下次调用时传入,而不直接引用函数返回的值。 从而使堆栈释放,也就达到了尾递归优化的目的。
下面我们增加了一个acc的参数,它存储上次的值,在下次调用时传入。
static int Accumulate(int acc,int n) { if(n==0) return acc; return Accumulate(acc*n,n-1); }
Accumulate递归时,我们仅需要使用最后一次的返回值即可。 调用如下:
var ac=Accumulate(1,20);
使用Lambda表达式实现尾递归阶乘:
static int Accumulate(int n) { Func<int,int,int> acc=null; acc=(result,next)=>next==0?result:acc(result*next,n-1); return acc(1,n); }
后继传递模式(Continuation passing style)。
CPS函数
CPS全称Continuation passing style,中文一般译为后继传递模式。
static int Time3(int x) { return x*3; } Console.WriteLine(Time3(5));
上面函数将输入值乘以3,我们平常基本上都会这样写。 其实我们还可以用返回函数的C#语法,构造嵌套方式,把函数的调用变成调用链times3(3)(5)。
这种方式在数学上或函数式编程中是比较直观的,正常的,但在指令式语言c#中却不是那么直观。
CPS中的后继(Continuation)一词指的是计算的剩余部分,类似times3(3)(5)红色这部分。
例如:表达式a*(b+c)的运算过程有多个计算步骤。可以c#写成下面函数来表示:
Console.WriteLine(Mult(a,Add(b,c)))
操作步骤如下:
1.b与c相加。
2.将结果乘以a。
3.输出结果。
执行1步时,后续操作是2,3。执行2步时,后续操作是3。 使用CPS模式来改造下times3函数:
static void Times3(int x,Action<int> continuation) { continuation(x*5); } Console.WriteLine(Time3(5,(x)=>Console.WriteLine(x)));
我们增加了一个表示后继操作3的函数参数,调用时传递后续操作,这就是CPS函数。
CPS变换
知道了CPS函数后,再详细看下CPS变换。
Console.WriteLine(Time3(5)); //CPS 变换 Time3CPS(3,x=>Console.WriteLine(x));
上面times3函数从直接调,到使用"后继传递操作"的过程就叫做CPS转换。
例如1:MAX函数的转换
static int Max(int n, int m) { if (n > m) return n; else return m; } Console.WriteLine(Max(3, 4));
我们把这max函数转换成CPS模式,需要下列步骤:
1:返回值修改成void
2:添加一个额外的类型参数 Action,T是原始返回类型。
3:使用后续操作表达式参数替代原来所有返回声明。
static void Max(int x,int y,Action<int> k) { if(x>y) { k(x); return; } k(y); }
例如2:假如有3个函数Main、F、G,Main调用F、F调用G。
Console.WriteLine(F(1) + 1); static int F(int n) { return G(n + 1) + 1; } static int G(int n) { return n + 1; }
我们把F和G转换成CPS风格,和Max函数同样的转换步骤:
F(1, x => Console.WriteLine(x + 1)); static void F(int n, Action<int> k) { G(n + 1, x => k(x + 1)); } static void G(int n, Action<int> k) { k(n + 1); }
CPS尾递归
这是传统的递归阶乘:
static int Factorial(int n) { if (n == 0) return 1; else return n * Factorial(n - 1); }
使用同样的步骤,把递归转换成CPS尾递归:
Factorial(5, x => Console.WriteLine(x)); static void Factorial(int n, Action<int> continuation) { if (n == 0) continuation(1); else Factorial(n - 1, x => continuation(n * x)); }
“计算n的阶乘,并将结果传入continuation方法并返回”,也就是“计算n - 1的阶乘,并将结果与n相乘,再调用continuation方法”。为了实现“并将结果与n相乘,再调用continuation方法”这个逻辑,代码 又构造了一个匿名方法,再次传入Factorial方法。
总结
CPS模式是非常强大的,在很多方面都有使用,比如在编译器实现中CPS风格的解析器组合子、函数完成后回调。也可以说是把程序内部原本的控制操作,用CPS方法抽取出来暴露给程序员,例如文中的例子。
使用递归的技巧
在使用递归时,要记住以下技巧:
1、确认递归能够停止。
检查子程序以确认其中含有一条非递归路径。通常这意味着子程序中含有一项判断,无须进一步的递归就可停止下来。
2、使用安全计数器防止出现无穷递归。
3、把递归限制在一个子程序中。
循环递归(A调用B,B调用C,C调用A)非常危险。对人脑而言理解一个递归已经够困难了,如果使用循环递归,那么就更难理解程序的逻辑了,对程序入口 和出口的位置将更难把握,尤其是出口点,很容易造成想象不到的错误或者返回值。
4、留心栈空间。
使用了递归以后,无法保证程序使用了多少栈空间,也很难预测程序在运行时的表现如何。不过,可以按照以下步骤来控制运行期间的表象。
首先,使用安全计数器,在设置上限时,要考虑需要或者愿意为程序分配多少栈空间,应该把上限值设置的尽量低,防止堆栈溢出。
5、不要用递归去计算阶乘或斐波那契额数列。
转载地址:点击这里