学号20179214 2017-2018-2 《密码与安全新技术》第七周作业
课程:《密码与安全新技术》
班级: 201792
姓名: 刘胜楠
学号:20179214
上课教师:谢四江
上课日期:2018年6月21日
必修/选修: 必修
学习内容总结
题目《对MEMS加速度计的声学注入攻击》
前言
MEMS传感器即微机电系统(Microelectro Mechanical Systems),是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。截止到2010年,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中MEMS传感器占相当大的比例。MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。
mems元器件用处非常广泛,在智能手表,智能手机,无人汽车,平衡车,以及无人机
背景
浙江大学徐文源团队发表了一篇walnut的mems加速度计的声学攻击论文
2.2017.7 阿里团队在黑帽子大会上提出了对智能设备的声波进行攻击
3.使用声波和超声波可以破坏硬盘论文研究的贡献
为了系统地分析MEMS加速度计的脆弱性,我们模拟了声学干扰对传感器整个结构的影响,包括传感质量和信号调理元件。我们在典型的MEMS加速度计(即不安全的低通滤波器和不安全的放大器)的信号调节路径中发现两个有问题的组件,导致两种类型的掺杂输出:波动测量值和恒定测量值。这两个组件不仅解释了注入攻击的根本原因,而且还使我们能够设计两个额外的攻击类别:传感器输出偏置和输出控制,从而允许对MEMS加速度计输出的敌对控制水平不断提高。
输出偏置攻击(即不安全的低通滤波器在声学干扰下实现输出测量的错误波动),输出控制攻击(即,不安全的放大器可以在声学干扰下实现错误的恒定输出测量)。在软件系统层面,我们的实验证明了向Android智能手机的加速度计注入声学干扰以控制驾驶RC汽车的应用程序。我们还通过每小时向Fitbit传入3000步来证明概念端到端声学攻击的证据。结果证实了我们的担忧,即系统软件不能充分验证传感数据的完整性 - 默认情况下盲目信任传感器的输出。
先前研究了通过将消声材料应用于传感器来防止恶意声学干扰。在执行器和传感器串联运行的情况下,存在其他防御机制来阻止传感器欺骗攻击。
我们提供了两种防御方式:
(1)硬件解决方案,即如果MEMS传感器的设计考虑到安全性,即信号调节路径上的每个组件都选用更大的操作参数,则可消除声音注入攻击。
(2)用于追溯保护已经部署在各种设备和系统中的脆弱的MEMS加速度计的软件解决方案。我们评估我们的软件防御机制对脆弱的MEMS加速度计的保护,显示可以减轻输出偏置攻击。- 设计恶意声学干扰MEMS加速度计的物理模型。
- 对MEMS加速度计和采用了这些传感器的系统进行声学注入攻击,并通过对攻击结果的测量来扫描硬件级安全漏洞。
两种基于软件的防御机制可以从一定程度上保证MEMS加速度计输出数据的完整性。
实验原理
MEMS加速度计有一个连接到弹簧的质量块,当传感器加速时,质量块被移位。声波通过空气传播,并在其路径上展示物理物体的力量。如果声频正确调谐,它可以振动加速度计的质量块,以可预测的方式改变传感器的输出。
电容式加速度传感器是基于电容原理的极距变化型的电容传感器,其中一个电极是固定的,另一变化电极是弹性膜片。弹性膜片在外力(气压、液压等)作用下发生位移,使电容量发生变化。这种传感器可以测量气流(或液流)的振动速度(或加速度),还可以进一步测出压力。
实验装置
像任何电路组件一样,放大器和ADC(模数转换器)也有局限性。放大器有上限和下限;当输入信号超出这些界限时,会发生信号削波,并报告异常加速度读数。同样,ADC也有必须满足的要求。根据奈奎斯特采样定理,需要最小采样率以避免误解以数字形式表示的模拟信号(也称为信号混叠)。因此,通常在ADC之前放置一个LPF,以滤除高频信号分量并强制实施奈奎斯特要求。
建立模型
假设
• 假设攻击者既不能直接访问数字化的传感器读数,也不能直接触摸传感器。
• 假设攻击者通过发射附近的声波来干扰传感器数据的完整性,即把之前信号调节路径上的模拟信号数字化,从而利用漏洞。
• 假设攻击者能够在受害设备附近诱发声音,其频率在人类可达到超声波范围(2-30kHz)内。
这是所用的装置对模型进行评估
有上面图片可以证明线性关系是成立的。
构建声学模块
• 过程变化:攻击者可以获得加速度计精确模型的不同实例,以确定其共振频率。 MEMS加速度计的谐振频率如何随工艺变化而变化? 或者每个模型的谐振频率特性相似?
• 控制人为加速度:正如我们的模型所示,声音干扰产生的加速度信号与创建它们的声波具有相同的频率。 人造加速度信号如何被下游信号调理元件扭曲或去除? 攻击者如何利用声学加速度的可预测性来实现对加速度计输出的精细控制?
• 通过加速度计改变软件的行为:攻击者如何影响从加速度计获取输入的软件的行为?
• 假定加速度信号生成的线性模型,本节预测下游信号调理硬件对这些信号数字的影响。 我们的实验表明,由于加速度计的信号调理硬件中的安全缺陷,数字化声波加速度测量可能以两种方式表现出来:加速度波动,就好像芯片处于高振动状态,加速度不变,就像芯片在发射火箭上一样。 这两种类型的伪造输出将作为全面攻击的基础。
通常包含在MEMS加速度计信号调节路径中的两个关键硬件组件分别是图中的放大器和低通滤波器(LPF),组件C和D。在理想的情况下,当放大器和LPF工作正常时,任何注入的声加速度信号在数字化之前都会被信号调理硬件去除,并且不会传递到终端系统。 但是,实际上这些组件具有物理限制。具体而言,每个加速度计都可以测量的加速度的最大幅度和频率有一个限制。超过这些限制会影响它们的加速度测量。
防止高频噪声污染ADC采样,设计人员通常在ADC之前包含一个模拟LPF。 理想的模拟LPF滤除高于指定截止频率的所有频率,同时通过以下所有频率。 为了实施奈奎斯特要求,LPF被设计成只传递频率是ADC采样率Fs的一半, 然而,实际上,不可能制造通过所有频率是到Fcutoff的LPF(例如恰好是采样频率的一半)并且完全阻止高于采样频率。相反,Fcutoff周围存在一定范围的频率,这些频率会衰减但不会完全消除。声学加速度信号可以通过以下两种方式之一受到LPF的影响:
• 1)不安全的低通滤波器:加速度计的低通滤波器设计的截止频率高于或接近传感器的谐振频率。
• 2)安全放大器:当未放大的加速度信号在放大器的动态范围内时,不发生削波。加速度信号保持不失真。
• 3)不安全的放大器:以前的研究表明,MEMS加速度计在信号限幅超过其放大器的动态范围时报告错误测量。如图c所示,主要原因是将直流分量引入饱和放大器的输出信号,该DC分量就不会被LPF去除,然而,尖锐的削波边缘,即高频分量被衰减。另外,当加速度计的LPF被可靠地设计时,即截止频率远低于谐振频率时,声加速度信号的非截断部分也被衰减。考虑到放大器的结构,削波可以是不对称的,并且滑入ADC的波形类似于具有非零DC偏移的低振幅正弦波。而数字输出测量大多是恒定的和非零的。
• 4)安全的低通滤波器:声音加速度信号的频率远高于LPF的截止频率并被完全衰减。
总之,在共振声学干扰下,传感器可能会报告三种类型的测量值:真实测量值和两种类型的虚假测量值。 错误的传感器测量是由于硬件组件的不安全性。
真实测量:加速度计的放大率是在共振声学干扰下产生的高宽度加速度信号,即不发生信号限幅。 加速度计的共振频率远大于LPF的截止频率。LPF衰减高频声加速度信号。
波动的错误测量:在放大器上没有观察到信号削波。LPF不会完全衰减高频声加速度信号。 声学加速度信号由ADC进行欠采样。
恒定移动的错误测量:在放大器中发生信号削波,将非零直流分量引入放大信号。安全设计的LPF传递直流信号并阻止高频信号。 一个非常稳定的非零信号由ADC采样。
输出偏置攻击
在本节中,我们将展示如何利用这两种错误测量(波动或常量)的可预测性来控制传感器的时间序列输出。 我们的主要贡献是识别两种不同类别的声音注入攻击,分别基于控制波动或恒定错误测量的输出偏置和输出控制攻击。 表1总结了我们对传感器容易受到什么攻击的程度的结果。
输出控制攻击
总结
为了降低对MEMS加速度计完整性的攻击风险,我们硬件设计建议提高放大器和滤波器的安全性,并减轻对下一代传感器的声学攻击。对于已经部署在该领域的传感器,我们提供双重成本软件防御机制,以防止输出偏置攻击:随机采样和180°异步采样。我们的软件防御机制可以保护所有易受输出偏置攻击影响的加速度计,但不会保证输出控制攻击
学习中的问题和解决过程
1.在整个论文的学习中,所有我面对的是专业的问题,这篇文章很多讲解都是偏于硬件的内容, 我的专业是偏向于软件,所以接受起来并不是很容易,但好在高中和大学的底子并没有忘记,所以再结合百度,,便可以理解。
2.这次所选择的题目是与最近的安全息息相关,并且周围有较好的实验环境,但是在实验复现的过程中遇到了很多问题,这个是我接下里需要解决的。
3.除去专业术语,另外就是理解全篇论文的关键点以及做出的贡献是花费了一段时间解决的。
参考资料
WALNUT:Waging Doub ton the Integrity of MEMS Accelerometers with Acoustic Injection Attacks