http://acm.hdu.edu.cn/showproblem.php?pid=5092
给一个m*n的矩阵,找到一个纵向的"线"使得线上的和最小并输出这条线,线能向8个方向延伸,要求找的是纵向的一条线(每一行各取一个点连成一线)
比较裸的dp,当前点只受到其上一行中的三个点的影响,然后求一下最大连和即可,dp过程中记录路径,然后打印时回溯即可
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
#define clr1(x) memset(x,-1,sizeof(x))
#define eps 1e-9
const double pi = acos(-1.0);
typedef long long LL;
typedef unsigned long long ULL;
const int modo = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int inf = 0x3fffffff;
const LL _inf = 1e18;
const int maxn = 105,maxm = 10005;
int p[maxn][maxn],dp[maxn][maxn],col[maxn][maxn],n,m,cas = 1;
char ch[maxn];
bool in(int x,int y)
{
return 1<=x&&x<=m&&1<=y&&y<=n;
}
void print(int x,int y)
{
if(x == 1){
printf("%d",y);
return ;
}
print(x - 1,col[x][y]);
printf(" %d",y);
}
void work()
{
RD2(m,n);
for(int i = 1;i <= m;++i)
for(int j = 1;j <= n;++j){
RD(p[i][j]);
dp[i][j] = inf;
}
for(int j = 1;j <= n;++j)
dp[1][j] = p[1][j];
for(int i = 2;i <= m;++i)
for(int j = n;j >= 1;--j){
for(int k = j+1;k >= j-1;--k){
if(in(i-1,k) && dp[i][j] > dp[i-1][k] + p[i][j]){
dp[i][j] = dp[i-1][k] + p[i][j];
col[i][j] = k;
}
}
}
int mn = inf;
for(int j = n;j >= 1;--j)
mn = min(mn,dp[m][j]);
//printf("%d\n",mn);
printf("Case %d\n",cas++);
for(int j = n;j >= 1;--j)
if(mn == dp[m][j]){
print(m,j);
puts("");
return ;
}
}
int main()
{
int _;RD(_);
while(_--){
work();
}
return 0;
}