http://acm.hdu.edu.cn/showproblem.php?pid=1568
看了半天,没思路,摘了一位dn的,学习了!
View Code
摘自:
http://hi.baidu.com/aekdycoin/blog/item/60bbae2b38c6f52ad42af18f.html
先看对数的性质,loga(b
^
c)
=
c
*
loga(b),loga(b
*
c)
=
loga(b)
+
loga(c);
假设给出一个数10234432,那么log10( 10234432 ) = log10( 1.0234432 * 10 ^ 7 ) = log10( 1.0234432 ) + 7 ;
log10( 1.0234432 )就是log10( 10234432 )的小数部分.
log10( 1.0234432 ) = 0.010063744
10 ^ 0.010063744 = 1.023443198
那么要取几位就很明显了吧 ~
先取对数(对10取),然后得到结果的小数部分bit,pow( 10.0 ,bit)以后如果答案还是 < 1000那么就一直乘10。
注意偶先处理了0 ~ 20项是为了方便处理 ~
这题要利用到数列的公式:an = ( 1 / √ 5 ) * [(( 1 + √ 5 ) / 2 ) ^ n - (( 1 - √ 5 ) / 2 ) ^ n](n = 1 , 2 , 3 .....)
取完对数
log10(an) =- 0.5 * log10( 5.0 ) + (( double )n) * log(f) / log( 10.0 ) + log10( 1 - (( 1 - √ 5 ) / ( 1 + √ 5 )) ^ n)其中f = (sqrt( 5.0 ) + 1.0 ) / 2.0 ;
log10( 1 - (( 1 - √ 5 ) / ( 1 + √ 5 )) ^ n) -> 0
所以可以写成log10(an) =- 0.5 * log10( 5.0 ) + (( double )n) * log(f) / log( 10.0 );
最后取其小数部分。
#include < iostream >
#include < cmath >
using namespace std;
int fac[ 21 ] = { 0 , 1 , 1 };
const double f = (sqrt( 5.0 ) + 1.0 ) / 2.0 ;
int main()
{
double bit;
int n,i;
for (i = 3 ;i <= 20 ;i ++ )fac[i] = fac[i - 1 ] + fac[i - 2 ]; // 求前20项
while (cin >> n)
{
if (n <= 20 )
{
cout << fac[n] << endl;
continue ;
}
bit =- 0.5 * log( 5.0 ) / log( 10.0 ) + (( double )n) * log(f) / log( 10.0 ); // 忽略最后一项无穷小
bit = bit - floor(bit);
bit = pow( 10.0 ,bit);
while (bit < 1000 )bit = bit * 10.0 ;
printf( " %d\n " ,( int )bit);
}
return 0 ;
}
假设给出一个数10234432,那么log10( 10234432 ) = log10( 1.0234432 * 10 ^ 7 ) = log10( 1.0234432 ) + 7 ;
log10( 1.0234432 )就是log10( 10234432 )的小数部分.
log10( 1.0234432 ) = 0.010063744
10 ^ 0.010063744 = 1.023443198
那么要取几位就很明显了吧 ~
先取对数(对10取),然后得到结果的小数部分bit,pow( 10.0 ,bit)以后如果答案还是 < 1000那么就一直乘10。
注意偶先处理了0 ~ 20项是为了方便处理 ~
这题要利用到数列的公式:an = ( 1 / √ 5 ) * [(( 1 + √ 5 ) / 2 ) ^ n - (( 1 - √ 5 ) / 2 ) ^ n](n = 1 , 2 , 3 .....)
取完对数
log10(an) =- 0.5 * log10( 5.0 ) + (( double )n) * log(f) / log( 10.0 ) + log10( 1 - (( 1 - √ 5 ) / ( 1 + √ 5 )) ^ n)其中f = (sqrt( 5.0 ) + 1.0 ) / 2.0 ;
log10( 1 - (( 1 - √ 5 ) / ( 1 + √ 5 )) ^ n) -> 0
所以可以写成log10(an) =- 0.5 * log10( 5.0 ) + (( double )n) * log(f) / log( 10.0 );
最后取其小数部分。
#include < iostream >
#include < cmath >
using namespace std;
int fac[ 21 ] = { 0 , 1 , 1 };
const double f = (sqrt( 5.0 ) + 1.0 ) / 2.0 ;
int main()
{
double bit;
int n,i;
for (i = 3 ;i <= 20 ;i ++ )fac[i] = fac[i - 1 ] + fac[i - 2 ]; // 求前20项
while (cin >> n)
{
if (n <= 20 )
{
cout << fac[n] << endl;
continue ;
}
bit =- 0.5 * log( 5.0 ) / log( 10.0 ) + (( double )n) * log(f) / log( 10.0 ); // 忽略最后一项无穷小
bit = bit - floor(bit);
bit = pow( 10.0 ,bit);
while (bit < 1000 )bit = bit * 10.0 ;
printf( " %d\n " ,( int )bit);
}
return 0 ;
}