BZOJ 1503 郁闷的出纳员(平衡树)(NOI 2004)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1503

Description

OIER公司是一家大型专业化软件公司,有着数以万计的员工。作为一名出纳员,我的任务之一便是统计每位员工的工资。这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资。如果他心情好,就可能把每位员工的工资加上一个相同的量。反之,如果心情不好,就可能把他们的工资扣除一个相同的量。我真不知道除了调工资他还做什么其它事情。工资的频繁调整很让员工反感,尤其是集体扣除工资的时候,一旦某位员工发现自己的工资已经低于了合同规定的工资下界,他就会立刻气愤地离开公司,并且再也不会回来了。每位员工的工资下界都是统一规定的。每当一个人离开公司,我就要从电脑中把他的工资档案删去,同样,每当公司招聘了一位新员工,我就得为他新建一个工资档案。老板经常到我这边来询问工资情况,他并不问具体某位员工的工资情况,而是问现在工资第k多的员工拿多少工资。每当这时,我就不得不对数万个员工进行一次漫长的排序,然后告诉他答案。好了,现在你已经对我的工作了解不少了。正如你猜的那样,我想请你编一个工资统计程序。怎么样,不是很困难吧?

Input

Output

输出文件的行数为F命令的条数加一。对于每条F命令,你的程序要输出一行,仅包含一个整数,为当前工资第k多的员工所拿的工资数,如果k大于目前员工的数目,则输出-1。输出文件的最后一行包含一个整数,为离开公司的员工的总数。

 

题目大意:略。(原来一进来就滚粗的员工不算入离开公司的员工总数……)

思路:随便用splay搞搞就好,一条模板题。

 

代码(1228MS):

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <iostream>
  4 #include <algorithm>
  5 #include <map>
  6 using namespace std;
  7 
  8 const int MAXN = 100010;
  9 
 10 int child[MAXN][2], size[MAXN], add[MAXN], wage[MAXN];
 11 int n, minWage, ncnt;
 12 
 13 inline int newNode(int k) {
 14     size[ncnt] = 1;
 15     wage[ncnt] = k;
 16     return ncnt++;
 17 }
 18 
 19 inline void update(int &x) {
 20     size[x] = size[child[x][0]] + size[child[x][1]] + 1;
 21 }
 22 
 23 inline void pushdown(int &x) {
 24     if(add[x]) {
 25         add[child[x][0]] += add[x];
 26         add[child[x][1]] += add[x];
 27         wage[x] += add[x];
 28         add[x] = 0;
 29     }
 30 }
 31 
 32 inline void rotate(int &x, int t) {
 33     int y = child[x][t];
 34     child[x][t] = child[y][t ^ 1];
 35     child[y][t ^ 1] = x;
 36     update(x), update(y);
 37     x = y;
 38 }
 39 
 40 void splay(int &x, int k) {
 41     pushdown(x);
 42     if(k == size[child[x][0]] + 1) return ;
 43     int t = k > size[child[x][0]];
 44     if(t == 1) k -= size[child[x][0]] + 1;
 45     int p = child[x][t];
 46     pushdown(p);
 47     int t2 = k > size[child[p][0]];
 48     int k2 = (t2 == 0 ? k : k - size[child[p][0]] - 1);
 49     if(k != size[child[p][0]] + 1) {
 50         splay(child[p][t2], k2);
 51         if(t == t2) rotate(x, t);
 52         else rotate(child[x][t], t ^ 1);
 53     }
 54     rotate(x, t);
 55 }
 56 
 57 int lower_count(int &x, int val) {
 58     if(x == 0) return 0;
 59     pushdown(x);
 60     if(val <= wage[x]) return lower_count(child[x][0], val);
 61     return size[child[x][0]] + 1 + lower_count(child[x][1], val);
 62 }
 63 
 64 inline int merge(int left, int right) {
 65     splay(left, size[left]);
 66     child[left][1] = right;
 67     update(left);
 68     return left;
 69 }
 70 
 71 inline void split(int x, int k, int &left, int &right) {
 72     splay(x, k);
 73     left = x;
 74     right = child[x][1];
 75     child[x][1] = 0;
 76     update(left);
 77 }
 78 
 79 inline void insert(int &x, int k) {
 80     int t = lower_count(x, k);
 81     if(t > 0) {
 82         int left, right;
 83         split(x, t, left, right);
 84         x = merge(merge(left, newNode(k)), right);
 85     } else x = merge(newNode(k), x);
 86 }
 87 
 88 int main() {
 89     scanf("%d%d", &n, &minWage);
 90     int root = 0, ans = 0;
 91     ncnt = 1;
 92     for(int i = 0; i < n; ++i) {
 93         char c;
 94         int k;
 95         scanf(" %c%d", &c, &k);
 96         if(c == 'I') {
 97             if(k >= minWage) {
 98                 if(root == 0) root = newNode(k);
 99                 else insert(root, k);
100             } //else ++ans;
101         };
102         if(c == 'A') {
103             add[root] += k;
104         };
105         if(c == 'S') {
106             add[root] -= k;
107             int t = lower_count(root, minWage);
108             if(t > 0) {
109                 int left, right;
110                 split(root, t, left, right);
111                 ans += size[left];
112                 root = right;
113             }
114         };
115         if(c == 'F') {
116             if(k > size[root]) puts("-1");
117             else {
118                 splay(root, size[root] - k + 1);
119                 printf("%d\n", wage[root]);
120             }
121         };
122     }
123     printf("%d\n", ans);
124 }
View Code

 

转载于:https://www.cnblogs.com/oyking/p/3456330.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值