uva 11178 - Morley's Theorem

 

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119

 

11178 - Morley's Theorem

Time limit: 3.000 seconds

Problem D
Morley’s Theorem
Input: Standard Input

Output: Standard Output

 Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

 

 

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

 

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers xa , ya,xb , yb,xc , yc. This six integers actually indicates that the Cartesian coordinates of point A, B and C are  (xa , ya) , (xb , yb)and (xc , yc)respectively. You can assume that the area of triangle ABC is not equal to zero,  0 <= xa, ya , xb , xc , yb , yc <= 1000 and the points A, B and C are in counter clockwise order.

 
Output
For each line of input you should produce one line of output. This line contains six floating point numbers  xd , yd , xe , ye , xf , yf separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are  (xd , yd) , (xe , ye) , (xf , yf)respectively. Errors less than   10 ^ -5will be accepted.

 

Sample Input   Output for Sample Input

2

1 1 2 2 1 2

0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

 

 

 

 

 

Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

 

分析:

STL

 

 

AC代码:

 

  1 // UVa11178 Morley's Theorem
  2 
  3 #include<cstdio>
  4 
  5 #include<cmath>
  6 
  7  
  8 
  9 struct Point {
 10 
 11   double x, y;
 12 
 13   Point(double x=0, double y=0):x(x),y(y) { }
 14 
 15 };
 16 
 17  
 18 
 19 typedef Point Vector;
 20 
 21  
 22 
 23 Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
 24 
 25 Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
 26 
 27 Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
 28 
 29 double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
 30 
 31 double Length(const Vector& A) { return sqrt(Dot(A, A)); }
 32 
 33 double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
 34 
 35 double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
 36 
 37  
 38 
 39 Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w) {
 40 
 41   Vector u = P-Q;
 42 
 43   double t = Cross(w, u) / Cross(v, w);
 44 
 45   return P+v*t;
 46 
 47 }
 48 
 49  
 50 
 51 Vector Rotate(const Vector& A, double rad) {
 52 
 53   return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
 54 
 55 }
 56 
 57  
 58 
 59 Point read_point() {
 60 
 61   double x, y;
 62 
 63   scanf("%lf%lf", &x, &y);
 64 
 65   return Point(x,y);
 66 
 67 }
 68 
 69  
 70 
 71 Point getD(Point A, Point B, Point C) {
 72 
 73   Vector v1 = C-B;
 74 
 75   double a1 = Angle(A-B, v1);
 76 
 77   v1 = Rotate(v1, a1/3);
 78 
 79  
 80 
 81   Vector v2 = B-C;
 82 
 83   double a2 = Angle(A-C, v2);
 84 
 85   v2 = Rotate(v2, -a2/3);
 86 
 87  
 88 
 89   return GetLineIntersection(B, v1, C, v2);
 90 
 91 }
 92 
 93  
 94 
 95 int main() {
 96 
 97   int T;
 98 
 99   Point A, B, C, D, E, F;
100 
101   scanf("%d", &T);
102 
103   while(T--) {
104 
105     A = read_point();
106 
107     B = read_point();
108 
109     C = read_point();
110 
111     D = getD(A, B, C);
112 
113     E = getD(B, C, A);
114 
115     F = getD(C, A, B);
116 
117     printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", D.x, D.y, E.x, E.y, F.x, F.y);
118 
119   }
120 
121   return 0;
122 
123 }
View Code

 

转载于:https://www.cnblogs.com/jeff-wgc/p/4479204.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值