BZOJ 2006 [NOI2010]超级钢琴 (堆+主席树)

题面:BZOJ传送门 洛谷传送门

让你求前$K$大的子序列和,$n\leq 5*10^{5}$

只想到了个$nlog^{2}n$的做法,似乎要被卡常就看题解了..

好神奇的操作啊,我傻了

我们把序列和拆成两个前缀和相减

对于一个左端点$x$,它可以取的范围是$[x+l,x+r]$,查出该范围内的第1大值,然后把左端点编号$x$,取的是第几大值$k$,以及答案这些信息封成结构体推进堆里

根据贪心的策略我们要取最大的,要维护一个关于答案的大根堆

每次都取出堆顶元素,在$x$对应范围内查找第$k+1$大值,再把信息重新推回堆里,如此重复K次即可

上述过程也可以用区间RMQ实现,结构体里记录能取的左右端点就行了,每次取堆顶元素以后都拆成两部分推回堆里,似乎RMQ的做法空间常数会小不少

 

 1 #include <queue>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #define N1 500010
 6 #define M1 N1*30
 7 #define ll long long 
 8 using namespace std;
 9  
10 template <typename _T> void read(_T &ret)
11 {
12     ret=0; _T fh=1; char c=getchar();
13     while(c<'0'||c>'9'){ if(c=='-') fh=-1; c=getchar(); }
14     while(c>='0'&&c<='9'){ ret=ret*10+c-'0'; c=getchar(); }
15     ret=ret*fh;
16 }
17  
18 struct SEG{
19 int ls[M1],rs[M1],sz[M1],root[N1],tot;
20 inline void pushup(int rt)
21 {
22     sz[rt]=sz[ls[rt]]+sz[rs[rt]];
23 }
24 void update(int x,int l,int r,int rt1,int &rt2,int w)
25 {
26     if(!rt2||rt2==rt1){ rt2=++tot; ls[rt2]=ls[rt1]; rs[rt2]=rs[rt1]; sz[rt2]=sz[rt1]; }
27     if(l==r){ sz[rt2]+=w; return; }
28     int mid=(l+r)>>1;
29     if(x<=mid) update(x,l,mid,ls[rt1],ls[rt2],w);
30     else update(x,mid+1,r,rs[rt1],rs[rt2],w);
31     pushup(rt2);
32 }
33 int find(int K,int l,int r,int rt1,int rt2)
34 {
35     if(l==r) return l;
36     int mid=(l+r)>>1;
37     if(K<=sz[rs[rt2]]-sz[rs[rt1]]) return find(K,mid+1,r,rs[rt1],rs[rt2]);
38     else return find(K-sz[rs[rt2]]+sz[rs[rt1]],l,mid,ls[rt1],ls[rt2]);
39 }
40 }s;
41  
42 int n,nn,K,L,R;
43 int a[N1],b[N1]; ll sa[N1],t[N1];
44 struct node{
45 int x,K;ll val;
46 node(int x,int K,ll val):x(x),K(K),val(val){} node(){}
47 friend bool operator < (const node &s1,const node &s2)
48 {
49     if(s1.val!=s2.val) return s1.val<s2.val;
50     if(s1.x!=s2.x) return s1.x<s2.x; 
51     return s1.K<s2.K;
52 }
53 };
54 priority_queue<node>q;
55  
56  
57 int main()
58 {
59     scanf("%d%d%d%d",&n,&K,&L,&R);
60     int i,j,l,r,x,y,k; t[1]=0; 
61     for(i=1;i<=n;i++) read(a[i]), sa[i]=sa[i-1]+a[i], t[i+1]=sa[i];
62     sort(t+1,t+n+2); nn=unique(t+1,t+n+2)-(t+1);
63     for(i=1;i<=n;i++) 
64     {
65         b[i]=lower_bound(t+1,t+nn+1,sa[i])-t;
66         s.update(b[i],1,nn,s.root[i-1],s.root[i],1);
67     }
68     node p;
69     for(i=0;i<n;i++)
70     {
71         l=i+L; if(l>n) continue; r=min(i+R,n); 
72         x=s.find(1,1,nn,s.root[l-1],s.root[r]);
73         q.push(node(i,1,t[x]-sa[i]));
74     }
75     ll ans=0;
76     while(K--)
77     {
78         p=q.top(); q.pop(); ans+=p.val;
79         i=p.x, l=i+L, r=min(i+R,n); if(p.K==r-l+1) continue;
80         x=s.find(p.K+1,1,nn,s.root[l-1],s.root[r]);
81         q.push(node(i,p.K+1,t[x]-sa[i]));
82     }
83     printf("%lld\n",ans);
84     return 0;
85 }

 

转载于:https://www.cnblogs.com/guapisolo/p/10434749.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值