一开始用了复杂度看起来对实则常数巨大的线段树+hash……后来发现队列就行……
把珠子按位置排序,然后用队列维护一段,枚举右端点更新答案即可
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1000005,inf=2147483647;
int n,m,s[65],ans=inf,tot,sum,l=1,r;
struct qwe
{
int k,p;
qwe(int K=0,int P=0)
{
k=K,p=P;
}
}a[N],q[N];
bool cmp(const qwe &a,const qwe &b)
{
return a.p<b.p;
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
for(int t=read();t>=1;t--)
a[++tot]=qwe(i,read());
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
{
q[++r]=a[i];
if(++s[q[r].k]==1)
sum++;
while(sum==m)
{
ans=min(ans,q[r].p-q[l].p);
s[q[l].k]--;
if(s[q[l].k]==0)
sum--;
l++;
}
}
printf("%d\n",ans);
return 0;
}
极蠢线段树
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<map>
using namespace std;
const int N=1000005;
int n,m,g[N],tot,rl[N],has,ans=2e9,mn=0;
vector<int>a[65],b[N];
map<int,int>mp;
struct xds
{
int l,r,mn;
}t[505];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r;
if(l==r)
return;
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
}
void update(int ro,int p,int v)
{
if(t[ro].l==t[ro].r)
{
t[ro].mn=v;
return;
}
int mid=(t[ro].l+t[ro].r)>>1;
if(p<=mid)
update(ro<<1,p,v);
else
update(ro<<1|1,p,v);
t[ro].mn=min(t[ro<<1].mn,t[ro<<1|1].mn);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
for(int j=read();j>=1;j--)
{
g[++tot]=read();
a[i].push_back(g[tot]);
}
mn=max(mn,a[i][0]);
}
sort(g+1,g+1+tot);
for(int i=1;i<=tot;i++)
if(i==1||g[i]!=g[i-1])
mp[g[i]]=++has,rl[has]=g[i];
for(int i=1;i<=m;i++)
for(int j=0,len=a[i].size();j<len;j++)
b[mp[a[i][j]]].push_back(i);
build(1,1,m);
for(int i=1;i<=has;i++)
if(rl[i]>=mn)
{
for(int j=0,len=b[i].size();j<len;j++)
update(1,b[i][j],rl[i]);
ans=min(ans,rl[i]-t[1].mn);
}
printf("%d\n",ans);
return 0;
}