CodeForces 362E Petya and Pipes

本文介绍了一种在网络流图中通过调整边的最大流量来优化最大流量的方法。具体地,对于一个包含n个节点的网络流图,允许对任意一条边的最大流量进行k次增量操作,目标是最大化整个网络的流量。解决方案包括将原始边拆分为两个带成本的边,使用SPFA算法寻找增广路径,并更新流量和成本直到达到最大可能的流量。
摘要由CSDN通过智能技术生成

Description

给一个 \(n\) 个点的网络流图,每次可以让一条边的最大流量增加 \(1\) ,最多 \(k\) 次,求最大流量。

\(n\le 50,0\le k\le 10^3\)

Solution

把原图每条边 \((u,v,c)\) 拆成两条代费用的边 \((u,v,c,0)\)\((u,v,k,1)\) ,增广到费用大于 \(k\) 为止。

#include<bits/stdc++.h>
using namespace std;

template <class T> void read(T &x) {
    x = 0; bool flag = 0; char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar()) flag |= ch == '-';
    for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - 48; flag ? x = ~x + 1 : 0;
}

#define N 51
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define INF 0x3f3f3f3f

int k;

int flow, cost, head[N], tot = 1, dis[N], pre[N];
struct { int v, c, w, next; }e[100010];
queue<int> q;
bool inq[N];
inline void insert(int u, int v, int c, int w) {
    e[++tot].v = v, e[tot].c = c, e[tot].w = w, e[tot].next = head[u], head[u] = tot;
}
inline void add(int u, int v, int c, int w) {
    insert(u, v, c, w), insert(v, u, 0, -w);
}
bool spfa(int S, int T) {
    memset(dis, 0x3f, sizeof dis); dis[S] = 0, q.push(S);
    while (!q.empty()) {
        int u = q.front(); q.pop(), inq[u] = 0;
        for (int i = head[u], v; i; i = e[i].next) e[i].c && dis[v = e[i].v] > dis[u] + e[i].w ?
            dis[v] = dis[u] + e[i].w, pre[v] = i, (!inq[v] ? q.push(v), inq[v] = 1 : 0) : 0;
    }
    if (dis[T] >= INF) return 0;
    int d = INF;
    for (int i = T; i != S; i = e[pre[i] ^ 1].v) d = min(d, e[pre[i]].c);
    if (cost + d * dis[T] > k) {
        flow += (k - cost) / dis[T];
        return 0;
    }
    return 1;
}
void mcf(int S, int T) {
    int d = INF;
    for (int i = T; i != S; i = e[pre[i] ^ 1].v) d = min(d, e[pre[i]].c);
    for (int i = T; i != S; i = e[pre[i] ^ 1].v) e[pre[i]].c -= d, e[pre[i] ^ 1].c += d, cost += d * e[pre[i]].w;
    flow += d;
}

int main() {
    int n; read(n), read(k);
    rep(i, 1, n) rep(j, 1, n) {
        int f; read(f);
        if (f) add(i, j, f, 0), add(i, j, k, 1);
    }
    int ans = 0;
    while (spfa(1, n)) mcf(1, n);
    cout << flow;
    return 0;
}

转载于:https://www.cnblogs.com/aziint/p/9609720.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值