题目
解决代码及点评
/*
求两个或 N 个数的最大公约数(gcd)和最小公倍数(lcm)的较优算法
*/
#include <iostream>
using namespace std;
int Gcd(int a, int b)
{
if (a < b)
{
swap(a, b);
}
if (b == 0)
{
return a;
}
else
{
return Gcd(b, a%b);
}
}
int lcm(int a, int b)
{
return a*b / Gcd(a, b);
}
int nGcd(int *pnArr, int n)
{
if (n == 0)
{
return *pnArr;
}
else
{
return Gcd(pnArr[n-1], nGcd(pnArr, n-1));
}
}
int nlcm(int *pnArr, int n)
{
if (n == 1)
{
return *pnArr;
}
else
{
return lcm(pnArr[n-1], nlcm(pnArr, n-1));
}
}
int main()
{
int a = 45;
int b = 30;
cout<<"gcd = "<<Gcd(a, b)<<endl;
cout<<"lcm = "<<lcm(a, b)<<endl;
int nArr[4] = {12,4,6,8};
cout<<"ngcd = "<<nGcd(nArr, 4)<<endl;
cout<<"nlcm = "<<nlcm(nArr, 4)<<endl;
system("pause");
return 0;
}
代码下载及其运行
代码下载地址:http://download.csdn.net/detail/yincheng01/6704519
解压密码:c.itcast.cn
下载代码并解压后,用VC2013打开interview.sln,并设置对应的启动项目后,点击运行即可,具体步骤如下:
1)设置启动项目:右键点击解决方案,在弹出菜单中选择“设置启动项目”
2)在下拉框中选择相应项目,项目名和博客编号一致
3)点击“本地Windows调试器”运行
程序运行结果