2.1 Standalone 模式运行机制
Standalone 集群有四个重要组成部分,分别是:
1) Driver:是一个进程,我们编写的 Spark 应用程序就运行在 Driver 上,由
Driver 进程执行;
2) Master:是一个进程,主要负责资源的调度和分配,并进行集群的监控等职
责;
3) Worker:是一个进程,一个 Worker 运行在集群中的一台服务器上,主要负
责两个职责,一个是用自己的内存存储 RDD 的某个或某些 partition;另一个是启动
其他进程和线程(Executor),对 RDD 上的 partition 进行并行的处理和计算。
4) Executor:是一个进程,
一个 Worker 上可以运行多个 Executor,Executor
通过启动多个线程(task)来执行对 RDD 的 partition 进行并行计算,也就是执行我
们对 RDD 定义的例如 map、flatMap、reduce 等算子操作。
2.1.1 Standalone Client 模式

在 Standalone Client 模式下,Driver 在任务提交的本地机器上运行,Driver 启动
后向 Master 注册应用程序,Master 根据 submit 脚本的资源需求找到内部资源至少可
以启动一个 Executor 的所有 Worker,然后在这些 Worker 之间分配 Executor,Worker
上的 Executor 启动后会向 Driver 反向注册,所有的 Executor 注册完成后,Driver 开
始执行 main 函数,之后执行到 Action 算子时,开始划分 stage,每个 stage 生成对
应的 taskSet,之后将 task 分发到各个 Executor 上执行。
2.1.2 Standalone Cluster 模式

在 Standalone Cluster 模式下,任务提交后,Master 会找到一个 Worker 启动 Driver
进程, Driver 启动后向 Master 注册应用程序,Master 根据 submit 脚本的资源需求
找到内部资源至少可以启动一个 Executor 的所有 Worker,然后在这些 Worker 之间
分配 Executor,Worker 上的 Executor 启动后会向 Driver 反向注册,所有的 Executor
注册完成后,Driver 开始执行 main 函数,之后执行到 Action 算子时,开始划分 stage,
每个 stage 生成对应的 taskSet,之后将 task 分发到各个 Executor 上执行。
注意,Standalone 的两种模式下(client/Cluster),Master 在接到 Driver 注册
Spark 应用程序的请求后,会获取其所管理的剩余资源能够启动一个 Executor 的所
有 Worker,然后在这些 Worker 之间分发 Executor,此时的分发只考虑 Worker 上的
资源是否足够使用,直到当前应用程序所需的所有 Executor 都分配完毕,Executor
反向注册完毕后,Driver 开始执行 main 程序。
2.2 YARN 模式运行机制
2.2.1 YARN Client 模式

在 YARN Client 模式下,Driver 在任务提交的本地机器上运行,Driver 启动
后会和 ResourceManager 通讯申请启动 ApplicationMaster,随后 ResourceManager
分 配 container , 在 合 适 的 NodeManager 上启动 ApplicationMaster ,此时的
ApplicationMaster 的功能相当于一个 ExecutorLaucher,只负责向 ResourceManager
申请 Executor 内存。
ResourceManager 接到 ApplicationMaster 的资源申请后会分配 container,然后
ApplicationMaster 在资源分配指定的 NodeManager 上启动 Executor 进程,Executor
进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行 main
函数,之后执行到 Action 算子时,触发一个 job,并根据宽依赖开始划分 stage,每
个 stage 生成对应的 taskSet,之后将 task 分发到各个 Executor 上执行。
2.2.2 YARN Cluster 模式

在 YARN Cluster 模式下,任务提交后会和 ResourceManager 通讯申请启动
ApplicationMaster,随后 ResourceManager 分配 container,在合适的 NodeManager
上启动 ApplicationMaster,此时的 ApplicationMaster 就是 Driver。
Driver 启动后向 ResourceManager 申请 Executor 内存,ResourceManager 接到
ApplicationMaster 的资源申请后会分配 container,然后在合适的 NodeManager 上启
动 Executor 进程,Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完
成后 Driver 开始执行 main 函数,之后执行到 Action 算子时,触发一个 job,并根据
宽依赖开始划分 stage,每个 stage 生成对应的 taskSet,之后将 task 分发到各个
Executor 上执行。