2018.10.16 NOIP模拟 膜法(组合数学)

传送门
原题,原题,全TM原题
不得不说天天考原题。
其实这题我上个月做过类似的啊,加上dzyodzyodzyo之前有讲过考试直接切了。
要求的其实就是∑i=lr(ii−l+k)\sum _{i=l} ^{r} \binom {i} {i-l+k}i=lr(il+ki)
转化一下。
由于(ii−l+k)=(il−k)\binom {i} {i-l+k}=\binom {i} {l-k}(il+ki)=(lki)
于是原式<=>∑i=lr(il−k)\sum _{i=l} ^r \binom {i} {l-k}i=lr(lki)
<=>∑i=lr(il−k)+(ll−k+1)−(ll−k+1)\sum _{i=l} ^r \binom {i} {l-k}+\binom {l} {l-k+1}-\binom {l} {l-k+1}i=lr(lki)+(lk+1l)(lk+1l)
<=>∑i=l+1r(il−k)+(l+1l−k+1)−(ll−k+1)\sum _{i=l+1} ^r \binom {i} {l-k}+\binom {l+1} {l-k+1}-\binom {l} {l-k+1}i=l+1r(lki)+(lk+1l+1)(lk+1l)
<=>(r+1l−k+1)−(ll−k+1)\binom {r+1} {l-k+1}-\binom {l} {l-k+1}(lk+1r+1)(lk+1l)
代码

转载于:https://www.cnblogs.com/ldxcaicai/p/10084880.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值