传送门原题,原题,全TM原题。
不得不说天天考原题。
其实这题我上个月做过类似的啊,加上dzyodzyodzyo之前有讲过考试直接切了。
要求的其实就是∑i=lr(ii−l+k)\sum _{i=l} ^{r} \binom {i} {i-l+k}∑i=lr(i−l+ki)
转化一下。
由于(ii−l+k)=(il−k)\binom {i} {i-l+k}=\binom {i} {l-k}(i−l+ki)=(l−ki)
于是原式<=>∑i=lr(il−k)\sum _{i=l} ^r \binom {i} {l-k}∑i=lr(l−ki)
<=>∑i=lr(il−k)+(ll−k+1)−(ll−k+1)\sum _{i=l} ^r \binom {i} {l-k}+\binom {l} {l-k+1}-\binom {l} {l-k+1}∑i=lr(l−ki)+(l−k+1l)−(l−k+1l)
<=>∑i=l+1r(il−k)+(l+1l−k+1)−(ll−k+1)\sum _{i=l+1} ^r \binom {i} {l-k}+\binom {l+1} {l-k+1}-\binom {l} {l-k+1}∑i=l+1r(l−ki)+(l−k+1l+1)−(l−k+1l)
<=>(r+1l−k+1)−(ll−k+1)\binom {r+1} {l-k+1}-\binom {l} {l-k+1}(l−k+1r+1)−(l−k+1l)
代码
转载于:https://www.cnblogs.com/ldxcaicai/p/10084880.html