题目传送门
当时一看到这题,蒟蒻的我还以为是DP,结果发现标签是搜索……
这道题的难点在于思路和预处理,真正的搜索实现起来并不难。我们可以用一个贪心的思路,开一个dic数组记录每个单词的最小重复部分,这样搜索的时候就可以很方便地查阅dic数组,而不是每次再计算一遍。
预处理是长这样子的:
void f(string a,string b,int x,int y)
{
int a1=a.size()-1,b1=b.size()-1;
for(int i=0;i<=b1;i++) //从第一个开始枚举
{
if(a[0]==b[i]) //如果a的首字母和b中间的字母相同 ,则判断它们能不能接在一起
{
int pos=0,tot=0; //pos是当前a的第几个字母,tot是a和b的重合部分长度
for(int j=i;j<=b1;j++)
{
if(a[pos]==b[j])
{
tot++;
pos++;
if(j==b1&&tot!=min(a1,b1)+1) //如果枚举到了最后,并且a和b没有包含关系,说明可以这么接
dic[x][y]=tot; //记录最小重叠部分的长度
//之所以不break,是因为后面可能还会枚举到更小的接法
//比如 chsese 和 sesettt 显然 chsesesettt 要比chsesettt更优
}
else break;
}
}
}
}
这样就把每个单词的相互重叠部分全记录下来了,最后的处理出来的dic[x][y]是把x接在y后面的重复部分长度
之后我们就可以愉快的搜索了,搜索本身并不难,只需要注意每个单词可以用两次,以及接上新单词的“龙”的长度就可以了。
完整代码:
#include<iostream>
using namespace std;
int n,dic[21][21],vis[21],ans;
string words[21];
char s;
void f(string a,string b,int x,int y)
{
int a1=a.size()-1,b1=b.size()-1;
for(int i=0;i<=b1;i++) //从第一个开始枚举
{
if(a[0]==b[i]) //如果a的首字母和b中间的字母相同 ,则判断它们能不能接在一起
{
int pos=0,tot=0; //pos是当前a的第几个字母,tot是a和b的重合部分长度
for(int j=i;j<=b1;j++)
{
if(a[pos]==b[j])
{
tot++;
pos++;
if(j==b1&&tot!=min(a1,b1)+1) //如果枚举到了最后,并且a和b没有包含关系,说明可以这么接
dic[x][y]=tot; //记录最小重叠部分的长度
//之所以不break,是因为后面可能还会枚举到更小的接法
//比如 chsese 和 sesettt 显然 chsesesettt 要比chsesettt更优
}
else break;
}
}
}
}
void dfs(int pos,int sum)
{
ans=max(ans,sum); //实时更新ans
for(int i=1;i<=n;i++)
{
if(dic[i][pos]&&vis[i])
{
vis[i]--;
int suml=sum+words[i].size()-dic[i][pos]; //接上新单词"龙"的长度为=旧的长度+新单词长度-重复部分长度
dfs(i,suml); //接上新单词继续搜索
vis[i]++;
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>words[i];
vis[i]=2; //初始化vis数组,每个单词能用两次
}
cin>>s;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f(words[i],words[j],i,j); //预处理dic数组
for(int i=1;i<=n;i++)
{
if(words[i][0]==s) //找到开始部分
{
vis[i]--;
dfs(i,words[i].size()); //深搜
vis[i]++;
}
}
cout<<ans;
return 0;
}
- 广告时间