Dijkstra pb_ds优化

  由于用优先队列的Dijkstra在队列中一个点可能出现很多次,所以复杂度为 O(n+m)log(n+m),但是pd_ds优化的Dijkstra,复杂度可以达到 O(n+m)log(n)。

  注:pb_ds中不会自动去重。

  代码:

 

#include<cstdio>
#include<iostream>
#include<queue>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;
#define maxn 200005
#define INF 2147483647
__gnu_pbds ::priority_queue< pair<int,int> > q;
struct node
{
    int nxt,to,w;
} e[maxn];
int dis[maxn],head[maxn],cnt,n,m,s;
void add(int a,int b,int c)
{
    e[++cnt].to=b;
    e[cnt].w=c;
    e[cnt].nxt=head[a];
    head[a]=cnt;
}
bool vis[maxn];
int main()
{
    scanf("%d%d%d",&n,&m,&s);
    for(int i=1; i<=n; i++)
        dis[i]=INF;
    dis[s]=0;
    for(int i=1; i<=m; i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    q.push(make_pair(0,s));
    while(!q.empty())
    {
        int p=q.top().second;
        q.pop();
        if(vis[p]) continue;
        vis[p] = 1;
        for(int i=head[p]; i; i=e[i].nxt)
        {
            if(dis[p]!=INF&&dis[e[i].to]>dis[p]+e[i].w)
            {
                dis[e[i].to]=dis[p]+e[i].w;
                q.push(make_pair(-dis[e[i].to],e[i].to));
            }
        }
    }
    for(int i=1; i<=n; i++)
        printf("%d ",dis[i]);
    return 0;
}

 

转载于:https://www.cnblogs.com/popo-black-cat/p/11218940.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值