洛谷P3437 [POI2006]TET-Tetris 3D(二维线段树 标记永久化)

题意

题目链接

Sol

二维线段树空间复杂度是多少啊qwqqq

为啥这题全网空间都是\(n^2\)还有人硬要说是\(nlog^2n\)呀、、

对于这题来说,因为有修改操作,我们需要在外层线段树上也打标记,而且标记的形式是对一段区间赋值。所以我们对每个标记需要开线段树来维护更改的位置

而且由于我们pushdown的时候是从一棵线段树里找出标记下传,pushup的时候是从子树的线段树总找出最大值上传,显然复杂度会爆炸,那么我们考虑标记永久化

具体来说,我们在写线段树的时候,如果在一段区间上打了赋值标记,显然他的子树都会受到影响。而一段区间的最大值又会对其父亲产生影响,那么直接开两个数组记录一下

然后在递归的过程中处理一下标记就行了

// luogu-judger-enable-o2
// luogu-judger-enable-o2
// luogu-judger-enable-o2
/*

*/ 
#include<bits/stdc++.h>
#define LL long long 
using namespace std;
const int MAXN = 2001, INF = 1e9 + 10;
void chmin(int &a, int b) {a = (a < b ? a : b);}
void chmax(int &a, int b) {a = (a > b ? a : b);}
int sqr(int x) {return x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, Q;
struct InSeg {
    int rt[MAXN], ls[MAXN], rs[MAXN], mx[MAXN], tag[MAXN], tot;
    void update(int k) {
        mx[k] = max(mx[ls[k]], mx[rs[k]]);
    }
    void ps(int k, int v) {
        chmax(mx[k], v);
        chmax(tag[k], v);
    }
    void pushdown(int k) {
        if(!tag[k]) return ;
        if(!ls[k]) ls[k] = ++tot;
        if(!rs[k]) rs[k] = ++tot;
        ps(ls[k], tag[k]); ps(rs[k], tag[k]);
        tag[k] = 0;
    }
    void IntMem(int &k, int l, int r, int ll, int rr, int v) {
        if(!k) k = ++tot;
        if(ll <= l && r <= rr) {ps(k, v); return ;}
        pushdown(k);
        int mid = l + r >> 1;
        if(ll <= mid) IntMem(ls[k], l, mid, ll, rr, v);
        if(rr  > mid) IntMem(rs[k], mid + 1, r, ll, rr, v);
        update(k);
    }
    int Query(int k, int l, int r, int ll, int rr) {
        if(!k) return 0;
        if(ll <= l && r <= rr) return mx[k];
        pushdown(k);
        int mid = l + r >> 1, ans = 0;
        if(ll <= mid) chmax(ans, Query(ls[k], l, mid, ll, rr));
        if(rr  > mid) chmax(ans, Query(rs[k], mid + 1, r, ll, rr));
        return ans;
    }
};
int ls[MAXN], rs[MAXN], rtag[MAXN], rmx[MAXN], tot, root;
InSeg tag[MAXN], mx[MAXN];
void IntMem(int &k, int l, int r, int a, int b, int ll, int rr, int v) {
    if(!k) k = ++tot;
    mx[k].IntMem(rmx[k], 1, M, ll, rr, v);
    if(a <= l && r <= b) {
        tag[k].IntMem(rtag[k], 1, M, ll, rr, v); 
        return ;
    }
    int mid = l + r >> 1;
    if(a <= mid) IntMem(ls[k], l, mid, a, b, ll, rr, v);
    if(b  > mid) IntMem(rs[k], mid + 1, r, a, b, ll, rr, v);
}
int Query(int k, int l, int r, int a, int b, int ll, int rr) {
    if(!k) return 0;
    int ans = tag[k].Query(rtag[k], 1, M, ll, rr);
    if(a <= l && r <= b) return max(ans, mx[k].Query(rmx[k], 1, M, ll, rr));
    int mid = l + r >> 1;
    if(a <= mid) chmax(ans, Query(ls[k], l, mid, a, b, ll, rr));
    if(b  > mid) chmax(ans, Query(rs[k], mid + 1, r, a, b, ll, rr));
    return ans;
}
signed main() {
    N = read(); M = read(); Q = read();
    while(Q--) {
        int d = read(), s = read(), h = read(), x = read(), y = read();
        //printf("**%d %d %d %d %d\n", x + 1, x + d, y + 1, y + s, h);
        IntMem(root, 1, N, x + 1, x + d, y + 1, y + s, Query(root, 1, N, x + 1, x + d, y + 1, y + s)  + h);
    }
    printf("%d\n", Query(1, 1, N, 1, N, 1, M));
    return 0;
}
/*
7 5 4
4 3 2 0 0
3 3 1 3 0
7 1 2 0 3
2 3 3 2 2
*/

转载于:https://www.cnblogs.com/zwfymqz/p/10219990.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值