给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。
示例:
输入: n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
思路: 回溯 BFS搜索
关键在于循环边界的控制.
eg: n = 4 , k = 2
要求选2个数
1. 目前选了0个数 先从 1~3中选一个数 (不能选第4个数,相当于剪枝,如果第一个数就选4的话,第二个数没法选了)
2. 目前选了1个数 假设第一步在(1,2,3)中选了2,那么此步就在3~4中选一个数.
3. 目前选了2个数,加入到result中.bfs的一条路径结束,继续搜索下一条路径
eg: n = 4 , k = 3
1. 目前选了0个数 先从1~2中选一个数 (不能选第3,4个数,如果第一个数选了3,那么第三个数是选不出来的,如果第一个数选了4,那么第二,三个数是选不出来的)
2. 目前选了1个数 假设第一步在(1,2)中选了1,那么此步就在2~3中选一个数(不能选第4个数,相当于剪枝,如果第二个数选了4的话,第三个数是没法选的)
3. 目前选了2个数 ...
4. 目前选了3个数 ...
1 class Solution77 {
2
3 private List<List<Integer>> res = new ArrayList<>();
4 private List<Integer> elem = new ArrayList<>();
5
6 public List<List<Integer>> combine(int n, int k) {
7 if (n < 1 || n < k) {
8 return res;
9 }
10 search(1, n, k);
11 return res;
12 }
13
14 private void search(int index, int n, int k) {
15 if (elem.size() == k) {
16 List<Integer> temp = new LinkedList<>(elem);
17 res.add(temp);
18 } else {
19 for (int i = index; i <= n - (k - elem.size()) + 1; i++) {
20 elem.add(i);
21 search(i + 1, n, k);
22 elem.remove((Integer) i);
23 }
24 }
25 }
26 }