数据结构33:二叉树顺序存储和链式存储

 

通过前一节的学习,了解了树的一些基本知识。二叉树是在树的基础上对本身的结构做了更高的限制:
  1. 二叉树本身是有序树。
  2. 二叉树中各结点的度最多是 2,可以是 0,1,2。

 
图1 二叉树
 

满二叉树和完全二叉树

如果二叉树中除了叶子结点,每个结点的度都为 2,那么此二叉树为满二叉树。例如图 1 就是一个满二叉树。

如果二叉树除了最后一层外为满二叉树,最后一层的结点依次从左到右分布,此二叉树为完全二叉树。

  (A)                                                                  (B)
图2 完全二叉树
 
图 2(A)和(B)都是二叉树,但图 2(A)是完全二叉树,(B)由于最后一层不符合从左往右依次分布的要求,所以不是完全二叉树,只是一个普通的二叉树。

二叉树的性质

二叉树有以下几个性质:
  1. 二叉树中,第 i 层最多有2i-1个结点。
  2. 如果二叉树的深度为 K,那么此二叉树最多有2K-1个结点。
  3. 二叉树中,终端结点数(叶子结点数)为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1

性质 3 的计算方法为:

对于一个二叉树来说,除了度为 0 的叶子结点和度为 2 的结点,剩下的就是度为 1 的结点(设为 n1),那么总结点n = n0 + n1 + n2
同时,对于每一个结点来说都是由其父结点分支表示的,假设树中分枝数为 B,那么总结点数n = B + 1。而分枝数是可以通过 n1 和 n2 表示的:B = n1 + 2 * n2
所以,n 用另外一种方式表示为:n=n1+2*n2+1
两种方式得到的 n 值组成一个方程组,就可以得出n0 = n2 + 1

完全二叉树特有的性质

n 个结点的完全二叉树的深度为 [log2n]+1

[log2n]表示取小于log2n的最大整数。例如,[log24] = 2,而 [log25] 结果也是 2。

对于任意一个完全二叉树来说,将含有的结点按照层次从左到右依次标号(如图 2(A)),对于任意一个结点 i ,有以下几个结论:
  • 当 i > 1时,父亲结点为结点 [i / 2] 。( i = 1时,表示的是根结点,无父亲结点)
  • 如果 2*i > n ,则结点 i 肯定没有左孩子(为叶子结点);否则其左孩子是结点 2*i 。
  • 如果 2*i +1 > n ,则结点 i 肯定没有右孩子;否则右孩子是结点 2*i +1 。
二叉树和完全二叉树的各自所特有的性质,需要熟记,在对其进行存储以及利用二叉树解决问题时,会经常用到。

二叉树的存储结构

二叉树有两种存储结构:顺序存储结构和链式存储结构。

顺序存储


借用数组将二叉树中的数据元素存储起来。此方式只适用于完全二叉树,如果想存储普通二叉树,需要将普通二叉树转化为完全二叉树。

使用数组存储完全二叉树时,从数组的起始地址开始,按层次顺序从左往右依次存储完全二叉树中的结点。当提取时,根据完全二叉树的第 2 条性质,可以将二叉树进行还原。

例如,存储图 2(A)时,数组中存储为:



根据完全二叉树的第 2 条性质就可以根据数组中的数据重新搭建二叉树的结构。

如果普通二叉树也采取顺序存储的方式,就需要将其转化成完全二叉树,然后再存储,例如:



 转化前                              转化后
图 3 普通二叉树转完全二叉树

图 3 中,转化后的二叉树中,数据元素 0 表示此位置没有数据。将转化后的完全二叉树按照层次并从左到右的次序存储到数组中:



由此可见。深度为 K 且只有 K 个结点的单支树(树中不存在度为 2 的结点),需要  2K-1 的数组空间,浪费存储空间。所以,顺序存储方式更适用于完全二叉树。

链式存储


采用链式存储结构存储二叉树,就非常容易理解了。根据每个结点的结构,至少需要 3 部分组成:


图5 二叉链表结点构成

图 5 中, Lchild 代表指向左孩子的指针域; data 为数据域; Rchild 代表指向右孩子的指针域。使用此种结点构建的二叉树称为“二叉链表”。

结点结构代码表示:
typedef struct BiTNode
{   TElemType data;  
//数据域   struct BiTNode *lchild, *rchild;  //左右孩子指针 }BiTNode, *BiTree;

 

如果程序中需要频繁地访问结点的父结点,就可以使用下面这种结点结构:


图 6 三叉链表结点构成

图 6 中, Lchild 指向左孩子; Rchild 指向右孩子; data 为数据域; parent 指向父结点。使用这种结构的结点创建的树称为“三叉链表”。

结点结构代码表示:
typedef struct BiTNode
{   TElemType data;  
//数据域   struct BiTNode *lchild, *rchild;  //左右孩子指针   struct BiTNode *parent; }BiTNode, *BiTree;

 

例如,分别用两种结点创建图 3 中的单支树:
 


图7 单支树示意图

实现代码(以二叉链表为例)
#include <stdio.h>
#include <stdlib.h>
#define TElemType int
typedef struct BiTNode
{   TElemType data;  
//数据域   struct BiTNode *lchild, *rchild;  //左右孩子指针 }BiTNode, *BiTree;
void CreateBiTree(BiTree *T)
{   
*T = (BiTNode*)malloc(sizeof(BiTNode));   (*T)->data = 1;   (*T)->lchild = (BiTNode*)malloc(sizeof(BiTNode));   (*T)->rchild = NULL;   (*T)->lchild->data = 2;   (*T)->lchild->lchild = (BiTNode*)malloc(sizeof(BiTNode));   (*T)->lchild->rchild = NULL;   (*T)->lchild->lchild->data = 3;   (*T)->lchild->lchild->lchild = NULL;   (*T)->lchild->lchild->rchild = NULL; }
int main()
{   BiTree Tree;   CreateBiTree(
&Tree);   printf("%d", Tree->lchild->lchild->data);
  
return 0; }
运行结果:
3

 

总结

对于二叉树和完全二叉树的性质,需要学员在理解的情况下进行记忆。有关二叉树存储结构的选择,以及结点结构的选择,要视情况而定,基本上遵循以下两个原则:
    1. 如果是普通二叉树,用链式存储结构;如果是完全二叉树,用顺序存储结构。
    2. 如果问题中涉及到要访问某结点的父结点,就建立三叉链表;反之,使用二叉链表即可解决问题。

转载于:https://www.cnblogs.com/ciyeer/p/9044234.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值