luogu P1587 [NOI2016]循环之美

传送门

首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那么出现循环就要使的某一次除完后的余数在前面出现过.并且有欧拉定理\(a^{\varphi(n)}\equiv 1 (\mod n)(\gcd(a,n)=1)\),这样可以使得在计算小数点后一位时的余数在若干次后再次出现

然后要使得数值不同,所以其实要求的是这个东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=1][\gcd(j,k)=1]\]

先把只有\(j\)\(k\)的提前\[\sum_{j=1}^{m}[\gcd(j,k)=1]\sum_{i=1}^{n}[\gcd(i,j)=1]\]

然后把\([\gcd(j,k)=1]\)转化一下 \[\sum_{j=1}^{m} \sum_{d|j,d|k}\mu(d)\sum_{i=1}^{n}[\gcd(i,j)=1]\]

\(d\)提前\[\sum_{d=1}^{m}\mu(d)\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} \sum_{i=1}^{n}[\gcd(i,jd)=1]\]\[\sum_{d=1}^{m}\mu(d)\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} \sum_{i=1}^{n}[\gcd(i,j)=1][\gcd(i,d)=1]\]

后面那个是不是有点眼熟?我们如果记\(s(i,j,k)=\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=1][\gcd(j,k)=1]\),那么就能得到\[s(i,j,k)=\sum_{d|k}\mu(d)s(\lfloor\frac{m}{d}\rfloor,n,d)\]

这个递归处理就好了,边界就是\(m=0\)或者\(n=0\)时为\(0\),\(k=1\)时为\(\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=1]\),数论分块+杜教筛即可.复杂度大概是\(O(\log n\log m \sqrt{n}+n^{\frac{2}{3}})\),这个还是比较慢的,加了记忆化都要1800多ms 也可能是我写丑了

// luogu-judger-enable-o2
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double

using namespace std;
const int N=5e6+10,M=2000+10;
int rd()
{
    int x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}
int n,m,k,prm[N],tt;
bool pp[N];
LL mu[N];
map<int,LL> f;
int lm;
LL siv(int nn)
{
    if(nn<=N-10) return mu[nn];
    if(f.count(nn)) return f[nn];
    LL &an=f[nn];
    an=1;
    for(int i=2,j;i<=nn;i=j+1)
    {
        j=nn/(nn/i);
        an-=1ll*siv(nn/i)*(j-i+1);
    }
    return an;
}
LL ff(int nn,int mm)
{
    lm=min(nn,mm);
    LL an=0;
    for(int i=1,j;i<=lm;i=j+1)
    {
        j=min(nn/(nn/i),mm/(mm/i));
        an+=1ll*(siv(j)-siv(i-1))*(nn/i)*(mm/i);
    }
    return an;
}
vector<int> dd[M];
struct node
{
    int n,m,k;
    bool operator < (const node &bb) const {return n!=bb.n?n<bb.n:(m!=bb.m?m<bb.m:k<bb.k);}
};
map<node,LL> g;
LL sov(int n,int m,int k)
{
    if(n<=0||m<=0) return 0;
    node nw=(node){n,m,k};
    if(g.count(nw)) return g[nw];
    if(k==1) return g[nw]=ff(n,m);
    LL an=0;
    vector<int>::iterator it;
    for(it=dd[k].begin();it!=dd[k].end();++it)
    {
        int i=*it;
        an+=1ll*sov(m/i,n,i)*(mu[i]-mu[i-1]);
    }
    return g[nw]=an;
}

int main()
{
    mu[1]=1;
    for(int i=2;i<=N-10;++i)
    {
        if(!pp[i]) prm[++tt]=i,mu[i]=-1;
        for(int j=1;j<=tt&&i*prm[j]<=N-10;++j)
        {
            pp[i*prm[j]]=1;
            if(i%prm[j]==0) break;
            mu[i*prm[j]]=-mu[i];
        }
    }
    for(int i=2;i<=N-10;++i) mu[i]+=mu[i-1];
    n=rd(),m=rd(),k=rd();
    for(int i=1;i<=k;++i)
        if(k%i==0) dd[k].push_back(i);
    int nn=dd[k].size();
    for(int i=0;i<nn-1;++i)
    {
        int x=dd[k][i];
        vector<int>::iterator it;
        for(it=dd[k].begin();it!=dd[k].end();++it)
        {
            int y=*it;
            if(x<y) break;
            if(x%y==0) dd[x].push_back(y);
        }
    }
    printf("%lld\n",sov(n,m,k));
    return 0;
}

转载于:https://www.cnblogs.com/smyjr/p/11128521.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值