唐伯虎之作收录

要把金针度与人(书评集)——李敖
Quote:

  唐寅:《唐伯虎全集》

  唐寅(一四七○~一五二三),字伯虎,他的名号繁多,如子畏、六如、桃花庵、鲁国唐生、逃禅仙史、江南第一风流子等。他同时又是世俗中附会的“三笑点秋香”的主角,在名号繁多以外,更增加了他的传奇性。他是江苏吴县人。
  唐寅年轻时候,乡试考了第一名,座主梁储很赏识他,转介绍给程敏政。但他运气大差,程敏政被劾,连累到他,他跟着坐了牢。后来“滴为吏,耻不就,居家益放浪”。宁王宸濠造反前,仰慕他的文名,“以厚币聘之”。又一次运气大差来了,他发现宸濠又是一个早晚会使他坐牢的祸首,于是他“佯狂使酒,露其丑秽”,使宸濠吃他不消,最后放他走路。他的晚年,都沉醉在诗酒书画之中,颓然自放,讽世以死。
  唐寅是乱世中的大才子,洒脱而有真性情,他在《伯虎自赞》中说:“我问你是谁,你原来是我。……你我百年后,有你没了我。”如今,几个百年过去了,唐寅的身世与哀遇重新被我们认定,——不分你我。


桃花庵歌,这两版本哪个是原版?
Quote:
桃花庵歌--唐伯虎

桃花坞里桃花庵,桃花庵下桃花仙。
桃花仙人种桃树,又摘桃花换酒钱。
酒醒只在花前坐,酒醉还来花下眠。
半醉半醒日复日,花落花开年复年。
但愿老死花酒间,不愿鞠躬车马前。
车尘马足显者事,酒盏花枝隐士缘。
若将显者比隐士,一在平地一在天。
若将花酒比车马,彼何碌碌我何闲。
别人笑我太疯癫,我笑他人看不穿。
不见五陵豪杰墓,无花无酒锄作田。
------------------------------------------
桃花庵歌
桃花坞里桃花庵,桃花庵里桃花仙。桃花仙人种桃树,又折花枝当酒钱。
酒醒只在花前坐,酒醉还须花下眠。花前花后日复日,酒醉酒醒年复年。
不愿鞠躬车马前,但愿老死花酒间。车尘马足贵者趣,酒盏花枝贫者缘。
若将富贵比贫贱,一个平地一个天。若将贫贱比车马,他得驱驰我得闲。
世人笑我忒风颠,我笑世人看不穿。记得五陵豪杰墓,无花无酒锄做田。

弘治乙丑三月桃花庵主人唐寅

转载于:https://www.cnblogs.com/dkblog/archive/2006/03/20/1980974.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值