题意:给定一个n+1个点的有向图和起点,求经过其余n个点然后回到起点的最短路径。。(n<=10)
分析:看到这么小的数据,就知道不是普通的最短路了,首先,n 这么小,应该联想到的应该是状态压缩吧,每一个位表示经过了哪一个点。。。
dp[i][j] 表示到达点i 状态为j 时的最短路径长度,一开始忽略了一点,就是更新过的点,完全有可能再更新的,所以不能单纯记录是否更新过该状态,所以就想到了用spfa,将更新过的点入队,,继续拓展……
View Code
#include<iostream> #include<algorithm> #include<queue> using namespace std; const int N = (1 << 11) + 10; int map[15][15], n; int dp[15][N]; bool vis[15][N]; struct node { int v,state; node(){} node(int v,int state):v(v),state(state){} }; void spfa() { memset(vis,false,sizeof(vis)); memset(dp,-1,sizeof(dp)); dp[0][0]=0; queue<node> Q; Q.push(node(0,0)); vis[0][0]=true; while(!Q.empty()) { node tmp=Q.front(); Q.pop(); vis[tmp.v][tmp.state]=false; for(int i=0;i<n;++i) { if(tmp.v==i) continue; if(dp[i][tmp.state|(1<<i)]==-1 || dp[i][tmp.state|(1<<i)]>dp[tmp.v][tmp.state]+map[tmp.v][i]) { dp[i][tmp.state|(1<<i)]=dp[tmp.v][tmp.state]+map[tmp.v][i]; if(!vis[i][tmp.state|(1<<i)]) { vis[i][tmp.state|(1<<i)]=true; Q.push(node(i,tmp.state|(1<<i))); } } } } } int main() { while(scanf("%d", &n) == 1 && n) { n++; for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) scanf("%d", &map[i][j]); spfa(); printf("%d\n", dp[0][(1<<n)-1]); } return 0; }