洛咕 P3702 [SDOI2017]序列计数

和https://www.cnblogs.com/xzz_233/p/10060753.html一样,都是多项式快速幂,还比那个题水。

\(a[i]\)表示\([1,m]\)中$ \mod p\(余\)i\(的数的个数,\)f[i][j]\(表示用\)i\(个\)[1,m]\(中的数凑出\)j$的方案数

那么转移方程是\(f[i][j]=\sum_{k=0}^{p-1}f[i-1][(j-k)\mod m]\times a[k]\)

直接多项式快速幂即可

但是还有2条件,至少选一个质数,其实就是全都能选的减去不选质数的方案数

另外,这个模数要用MTT,贼简单,懒得写了,咕咕咕

#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 20170408
#define M 4491
typedef long long ll;
il int gi(){
    int x=0,f=1;
    char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return x*f;
}
typedef std::complex<double> cp;
int n,m,p,ANS;
int rev[257],N,lg;
cp FA[257],FB[257],GA[257],GB[257],omg[257],inv[257];
struct naive{
    int t[100];
    il int& operator [](int x){return t[x];}
};
il vd fft(cp*A,int n,cp*omg){
    for(int i=0;i<N;++i)if(rev[i]>i)std::swap(A[rev[i]],A[i]);
    for(int o=1;o<n;o<<=1)
        for(cp*p=A;p!=A+n;p+=o<<1)
            for(int i=0;i<o;++i){
                cp t=omg[n/(o<<1)*i]*p[i+o];
                p[i+o]=p[i]-t,p[i]+=t;
            }
}
cp A[257];
il vd work(cp*a,cp*b,int*s,int k){
    for(int i=0;i<N;++i)A[i]=a[i]*b[i];
    fft(A,N,inv);
    for(int i=0;i<N;++i)s[i%p]=(s[i%p]+k*((ll)(A[i].real()/N+0.5)%mod))%mod;
}
il naive operator *(naive&a,naive&b){
    for(int i=0;i<p;++i)FA[i]=a[i]/M,FB[i]=a[i]%M;
    for(int i=0;i<p;++i)GA[i]=b[i]/M,GB[i]=b[i]%M;
    for(int i=p;i<N;++i)FA[i]=FB[i]=GA[i]=GB[i]=0;
    fft(FA,N,omg),fft(FB,N,omg),fft(GA,N,omg),fft(GB,N,omg);
    naive ret;for(int i=0;i<p;++i)ret[i]=0;
    work(FA,GA,ret.t,M*M);work(FA,GB,ret.t,M);work(FB,GA,ret.t,M);work(FB,GB,ret.t,1);
    return ret;
}
const double pi=acos(-1);
int main(){
    n=gi(),m=gi(),p=gi(),ANS=0;
    N=1,lg=0;while(N<p<<1)N<<=1,++lg;
    for(int i=0;i<N;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
    for(int i=0;i<N;++i)omg[i]=cp(cos(i*pi*2/N),sin(i*pi*2/N)),inv[i]=conj(omg[i]);
    naive ans,x;
    for(int i=0;i<p;++i)ans[i]=0;ans[0]=1;
    for(int i=0;i<p;++i)x[i]=m/p;
    for(int i=m/p*p+1;i<=m;++i)++x[i%p];
    int y=n;
    while(y){
        if(y&1)ans=ans*x;
        x=x*x;y>>=1;
    }
    ANS+=ans[0];
    static int pri[20000000],pr=0;
    static bool yes[20000001];
    for(int i=0;i<p;++i)ans[i]=0;ans[0]=1;
    for(int i=0;i<p;++i)x[i]=0;
    yes[1]=1;
    for(int i=2;i<=m;++i){
        if(!yes[i])pri[++pr]=i;
        for(int j=1;j<=pr&&i*pri[j]<=m;++j){
            yes[i*pri[j]]=1;
            if(i%pri[j]==0)break;
        }
    }
    for(int i=1;i<=m;++i)x[i%p]+=yes[i];
    for(int i=0;i<p;++i)x[i]%=mod;
    y=n;
    while(y){
        if(y&1)ans=ans*x;
        x=x*x;y>>=1;
    }
    ANS-=ans[0];
    printf("%d\n",(ANS+mod)%mod);
    return 0;
}

转载于:https://www.cnblogs.com/xzz_233/p/10072209.html

在当今科技日新月异的时代,智慧社区的概念正悄然改变着我们的生活方式。它不仅仅是一个居住的空间,更是一个集成了先进科技、便捷服务与人文关怀的综合性生态系统。以下是对智慧社区整体解决方案的精炼融合,旨在展现其知识性、趣味性与吸引力。 一、智慧社区的科技魅力 智慧社区以智能化设备为核心,通过综合运用物联网、大数据、云计算等技术,实现了社区管理的智能化与高效化。门禁系统采用面部识别技术,让居民无需手动操作即可轻松进出;停车管理智能化,不仅提高了停车效率,还大大减少了找车位的烦恼。同时,安防报警系统能够实时监测家中安全状况,一旦有异常情况,立即联动物业进行处理。此外,智能家居系统更是将便捷性发挥到了极致,通过手机APP即可远程控制家中的灯光、窗帘、空调等设备,让居民随时随地享受舒适生活。 视频监控与可视对讲系统的结合,不仅提升了社区的安全系数,还让居民能够实时查看家中情况,与访客进行视频通话,大大增强了居住的安心感。而电子巡更、公共广播等系统的运用,则进一步保障了社区的治安稳定与信息传递的及时性。这些智能化设备的集成运用,不仅提高了社区的管理效率,更让居民感受到了科技带来的便捷与舒适。 二、智慧社区的增值服务与人文关怀 智慧社区不仅仅关注科技的运用,更注重为居民提供多元化的增值服务与人文关怀。社区内设有互动LED像素灯、顶层花园控制喷泉等创意设施,不仅美化了社区环境,还增强了居民的归属感与幸福感。同时,社区还提供了智能家居的可选追加项,如空气净化器、远程监控摄像机等,让居民能够根据自己的需求进行个性化选择。 智慧社区还充分利用大数据技术,对居民的行为数据进行收集与分析,为居民提供精准化的营销服务。无论是周边的商业信息推送,还是个性化的生活建议,都能让居民感受到社区的智慧与贴心。此外,社区还注重培养居民的环保意识与节能意识,通过智能照明、智能温控等系统的运用,鼓励居民节约资源、保护环境。 三、智慧社区的未来发展与无限可能 智慧社区的未来发展充满了无限可能。随着技术的不断进步与创新,智慧社区将朝着更加智能化、融合化的方向发展。比如,利用人工智能技术进行社区管理与服务,将能够进一步提升社区的智能化水平;而5G、物联网等新技术的运用,则将让智慧社区的连接更加紧密、服务更加高效。 同时,智慧社区还将更加注重居民的体验与需求,通过不断优化智能化设备的功能与服务,让居民享受到更加便捷、舒适的生活。未来,智慧社区将成为人们追求高品质生活的重要选择之一,它不仅是一个居住的空间,更是一个融合了科技、服务、人文关怀的综合性生态系统,让人们的生活更加美好、更加精彩。 综上所述,智慧社区整体解决方案以其科技魅力、增值服务与人文关怀以及未来发展潜力,正吸引着越来越多的关注与认可。它不仅能够提升社区的管理效率与居民的生活品质,更能够为社区的可持续发展注入新的活力与动力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值