Description
给定一个无向图,需要支持两个操作,断掉一条边或者询问两个点之间的路径上有多少个桥
Solution
考虑把操作离线,然后时光倒流一下。初始的时候所有的边权值都为\(1\),把加入边后形成的环直接置成\(0\)。询问就直接查询两点之间的链上权值和
Code
#include <bits/stdc++.h>
using namespace std;
#define fst first
#define snd second
#define squ(x) ((LL)(x) * (x))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef pair<int, int> pii;
inline int read() {
int sum = 0, fg = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') fg = -1;
for (; isdigit(c); c = getchar()) sum = (sum << 3) + (sum << 1) + (c ^ 0x30);
return fg * sum;
}
const int maxn = 3e4 + 10;
const int maxm = 2e5 + 10;
int n, m, cnt;
vector<int> g[maxn];
multiset<pii> Set;
struct node {
int x, y, ty;
}tt[maxm];
int Fa[maxn], S[maxn];
int find(int x) { return x == Fa[x] ? x : Fa[x] = find(Fa[x]); }
namespace ST {
#define ls (rt << 1)
#define rs (rt << 1 | 1)
int A[maxn << 2], tag[maxn << 2];
void push_up(int rt) { A[rt] = A[ls] + A[rs]; }
void push_down(int rt, int l, int r) {
if (~tag[rt]) {
tag[ls] = tag[rs] = tag[rt];
int mid = (l + r) >> 1;
A[ls] = tag[rt] * (mid - l + 1);
A[rs] = tag[rt] * (r - mid);
tag[rt] = -1;
}
}
void change(int rt, int l, int r, int L, int R, int v) {
if (L <= l && r <= R) {
A[rt] = v * (r - l + 1), tag[rt] = v;
return;
}
push_down(rt, l, r);
int mid = (l + r) >> 1;
if (L <= mid) change(ls, l, mid, L, R, v);
if (R > mid) change(rs, mid + 1, r, L, R, v);
push_up(rt);
}
int query(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) return A[rt];
push_down(rt, l, r);
int mid = (l + r) >> 1, res = 0;
if (L <= mid) res += query(ls, l, mid, L, R);
if (R > mid) res += query(rs, mid + 1, r, L, R);
return res;
}
void init() {
memset(tag, -1, sizeof tag);
change(1, 1, n, 1, n, 1);
}
}
int d[maxn], fa[maxn], sz[maxn], top[maxn], hs[maxn];
int Index, dfn[maxn];
void dfs1(int now, int f) {
d[now] = d[f] + 1, fa[now] = f, sz[now] = 1;
int ms = 0;
for (int i = 0; i < g[now].size(); i++) {
int son = g[now][i];
if (son == f) continue;
dfs1(son, now);
sz[now] += sz[son];
if (sz[son] > sz[ms]) ms = son;
}
hs[now] = ms;
}
void dfs2(int now, int topf) {
dfn[now] = ++Index;
top[now] = topf;
if (!hs[now]) return;
dfs2(hs[now], topf);
for (int i = 0; i < g[now].size(); i++) {
int son = g[now][i];
if (son == fa[now] || son == hs[now]) continue;
dfs2(son, son);
}
}
void change(int x, int y, int v) {
while (top[x] != top[y]) {
if (d[top[x]] < d[top[y]]) swap(x, y);
ST::change(1, 1, n, dfn[top[x]], dfn[x], v);
x = fa[top[x]];
}
if (d[x] > d[y]) swap(x, y);
if (dfn[x] < dfn[y]) ST::change(1, 1, n, dfn[x] + 1, dfn[y], v);
}
int query(int x, int y) {
int res = 0;
while (top[x] != top[y]) {
if (d[top[x]] < d[top[y]]) swap(x, y);
res += ST::query(1, 1, n, dfn[top[x]], dfn[x]);
x = fa[top[x]];
}
if (d[x] > d[y]) swap(x, y);
if (dfn[x] < dfn[y]) res += ST::query(1, 1, n, dfn[x] + 1, dfn[y]);
return res;
}
int main() {
freopen("line.in", "r", stdin);
freopen("line.out", "w", stdout);
n = read(), m = read();
for (int i = 1; i <= m; i++) {
int x = read(), y = read();
if (x > y) swap(x, y);
Set.insert((pii){x, y});
}
int op;
while (~(op = read())) {
int x = read(), y = read();
if (x > y) swap(x, y);
if (!op) Set.erase(Set.lower_bound((pii){x, y}));
tt[++cnt] = (node){x, y, op};
}
for (int i = 1; i <= n; i++) Fa[i] = i;
for (multiset<pii>::iterator it = Set.begin(); it != Set.end(); ++it) {
int x = it->fst, y = it->snd;
if (find(x) == find(y)) { tt[++cnt] = (node){x, y, 0}; continue; }
Fa[find(x)] = find(y);
g[x].push_back(y), g[y].push_back(x);
}
dfs1(1, 0);
dfs2(1, 1);
ST::init();
for (int i = cnt; i >= 1; i--) {
if (tt[i].ty) S[++S[0]] = query(tt[i].x, tt[i].y);
else change(tt[i].x, tt[i].y, 0);
}
for (int i = S[0]; i >= 1; i--) printf("%d\n", S[i]);
return 0;
}