leetcode Binary Tree Paths

LeetCode:二叉树路径

题目连接

https://leetcode.com/problems/binary-tree-paths/  

 Binary Tree Paths

Description

Given a binary tree, return all root-to-leaf paths.

For example, given the following binary tree:


/ \ 
2 3 


All root-to-leaf paths are:

$["1−>2−>5","1−>3"]$

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
	vector<string> binaryTreePaths(TreeNode* root) {
		ans.clear();
		if (!root) return ans;
		dfs(root, "");
		return ans;
	}
private:
	vector<string> ans;
	void dfs(TreeNode *x, string ret) {
		if (!x) return;
		if (!x->left && !x->right) {
			ans.push_back(ret + to_string(x->val));
			return;
		}
		dfs(x->left, ret + to_string(x->val) + "->");
		dfs(x->right, ret + to_string(x->val) + "->");
	}
};

转载于:https://www.cnblogs.com/GadyPu/p/5020623.html

内容概要:本文介绍了多种基于Matlab和Python的状态估计方法,重点聚焦于含有异常值的观测信号处理技术,涵盖卡尔曼滤波、加权最小二乘法、中位数估计、粒子滤波等多种算法在电力系统、电池寿命预测、信号处理等领域的应用。文中提供了完整的代码实现方案,并结合实际应用场景如电力系统状态估计、轴承故障诊断、负荷预测等进行验证,展示了不同算法在抗干扰性和精度方面的表现。此外,文档还列举了大量相关科研方向的技术支持内容,包括智能优化算法、机器学习、信号处理、路径规划、电力系统管理等多个领域。; 适合人群:具备一定编程基础,熟悉Matlab或Python语言,从事自动化、电气工程、控制科学与工程、信号处理等相关领域的研究生、科研人员及工程师;有一定科研经验并希望复现或改进现有算法的研究者。; 使用场景及目标:①解决观测数据中【状态估计】观测信号(包括异常值)的状态估计方法(Matlab代码实现)含有异常值时的状态估计问题,提升系统鲁棒性;②复现经典或前沿论文中的算法模型,如卡尔曼-加权最小二乘(KEWLS)、粒子滤波寿命预测等;③开展电力系统、故障诊断、多源数据融合等相关课题研究,支持算法开发与仿真验证。; 阅读建议:建议读者按目录顺序系统浏览,优先掌握核心算法原理后再结合提供的Matlab/Python代码进行调试与实验;对于欲深入研究者,可借助文中提供的网盘资源获取完整代码包,辅助完成论文复现或项目开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值