http://acm.uestc.edu.cn/#/problem/show/1324
题意:……
思路:卿学姐的学习分块例题。
分块是在线处理区间问题的类暴力算法,复杂度O(n*sqrt(n)),把给出的n个点的信息分成sqrt(n)个块,每个块有sqrt(n)个元素,然后去处理操作。
从块的左边扫到块的右边复杂度最多是O(sqrt(n)),然后扫过所有的块复杂度最多是O(sqrt(n))。
(画的好丑= =)
这个图一个一个区间代表一个块。比如这里我们要处理[L,R]的问题,那么从L扫到属于L的块的右边界复杂度最多O(sqrt(n)),从不属于L的块扫到不属于R的块最多sqrt(n)个块,因此复杂度最多O(sqrt(n)),再从属于R的块的左边界扫到R,复杂度也是最多O(sqrt(n)),因此,总的复杂度是O(sqrt(n))。
很美妙的处理啊。
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <algorithm> 5 using namespace std; 6 #define N 100010 7 typedef long long LL; 8 9 int sz, num, l[N], r[N], belong[N], n; 10 LL a[N], block[N]; 11 12 void Build() { 13 sz = sqrt(n); // 每个块的大小 14 num = n / sz; if(n % sz) num++; // 块的数量,如果n有剩余,那么要分多一个块 15 for(int i = 1; i <= num; i++) 16 l[i] = (i - 1) * sz + 1, r[i] = i * sz; // 每个块在数组的[l, r]区间,即块的管辖范围 17 r[num] = n; 18 for(int i = 1; i <= n; i++) 19 belong[i] = (i - 1) / sz + 1; // 第i个元素属于第belong[i]个块 20 } 21 22 void Update(int id, int w) { 23 a[id] += w; 24 block[belong[id]] = max(block[belong[id]], a[id]); 25 } 26 27 LL Query(int L, int R) { 28 LL ans = 0; 29 if(belong[L] == belong[R]) // 如果属于同一个块,暴力扫,复杂度最大sqrt(n) 30 for(int i = L; i <= R; i++) ans = max(ans, a[i]); 31 else { // 如果不属于同一个块 32 for(int i = L; i <= r[belong[L]]; i++) ans = max(ans, a[i]); // 暴力把左边扫到左边的块的右边界 33 for(int i = belong[L] + 1; i <= belong[R] - 1; i++) ans = max(ans, block[i]); // 暴力扫不属于左边和右边的块 34 for(int i = l[belong[R]]; i <= R; i++) ans = max(ans, a[i]); // 暴力从属于右边的快的左边界扫到右边 35 } 36 return ans; 37 } 38 39 int main() { 40 int q; 41 while(~scanf("%d%d", &n, &q)) { 42 memset(block, 0, sizeof(block)); 43 memset(a, 0, sizeof(a)); 44 Build(); 45 while(q--) { 46 int a, b, c; 47 scanf("%d%d%d", &a, &b, &c); 48 if(a == 1) Update(b, c); 49 else printf("%lld\n", Query(b, c)); 50 } 51 } 52 return 0; 53 }