小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。
有一次,老师出的题目是:36 x 495 = ?
他却给抄成了:396 x 45 = ?
但结果却很戏剧性,他的答案竟然是对的!!
假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)
能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?
请你利用计算机的优势寻找所有的可能,并回答不同算式的种类数。
满足乘法交换律的算式计为不同的种类,所以答案肯定是个偶数。
因为 36 * 495 = 396 * 45 = 17820
类似这样的巧合情况可能还有很多,比如:27 * 594 = 297 * 54
分析:
思路一:暴力枚举各个位置上的值
1 #include<iostream> 2 #include<cstdio> 3 using namespace std; 4 int main(){ 5 int a,b,c,d,e; 6 int ans=0; 7 for( a=1; a<=9; a++ ){ 8 for( b=1; b<=9; b++ ){ 9 for( c=1; c<=9; c++ ){ 10 for( d=1; d<=9; d++ ){ 11 for( e=1; e<=9; e++ ){ 12 if((a*10+b)*(c*100+d*10+e)==(a*100+d*10+b)*(c*10+e)&&a!=b&&a!=c&&a!=d&&a!=e&& 13 b!=c&&b!=d&&b!=e&&c!=d&&c!=e&&d!=e){ 14 ans++; 15 } 16 } 17 } 18 } 19 } 20 } 21 printf("%d\n",ans); 22 return 0; 23 }
思路二:dfs全排列,筛选条件,运用visited函数有效的避免重复数字
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 7 #define ll long long 8 int visited[10];/*数组值为1代表选用这个数,为0代表不选用*/ 9 ll ans = 0; 10 11 bool test(int a[] ){/*检查是否符合条件*/ 12 if((a[1]*10+a[2])*(a[3]*100+a[4]*10+a[5])==(a[1]*100+a[4]*10+a[2])*(a[3]*10+a[5])){ 13 return true; 14 } 15 else{ 16 return false; 17 } 18 } 19 20 void dfs(int k,int a[]){ 21 if(k==6){ 22 if(test(a)){ 23 ans++; 24 } 25 return ; 26 } 27 for( int i=1; i<=9; i++ ){ 28 if(!visited[i]){ 29 a[k]=i; 30 visited[i]=1; 31 dfs(k+1,a); 32 /*不选用这个数,恢复默认值*/ 33 visited[i]=0; 34 a[k]=0; 35 } 36 } 37 } 38 39 int main(){ 40 int a[10]; 41 dfs(1,a); 42 cout<<ans<<endl; 43 return 0; 44 }