快速矩阵乘法:Strassen 演算法

Intro

Matrix multiplication 是最基本的线性代数操作之一。标准矩阵乘法 $ C_{i,j} = \sum_k A_{i,k} B_{k,j} $ 复杂度为 $ O(n^3) $ 并不是矩阵乘法的最优解。实践中常常对大矩阵使用 strassen 算法,小矩阵采用标准矩阵乘法。Strassen 算法由 Volker Strassen 提出。

Algo

对于问题 $ C = AB \(,\)A\(、\)B$ 已知,求解 \(C\)

  1. 通过 zero-padding,将 A、B 填充为以 2 的幂为 size 的 square-matrix。将 ABC 等分为四个 block:
    804675-20150829211044734-2005386811.png

  2. 计算如下矩阵 M:
    804675-20150829211206672-2088140380.png
    804675-20150829211222015-1062089004.png
    804675-20150829211224812-1015174022.png
    804675-20150829211237297-1225345833.png
    804675-20150829211251297-968523229.png
    804675-20150829211258531-1372915781.png
    804675-20150829211304719-2038256270.png

  3. 计算 C:
    804675-20150829211415562-564825591.png
    804675-20150829211425797-1516202394.png
    804675-20150829211431859-2023381553.png
    804675-20150829211439953-1562793119.png

Conclu

标准矩阵乘法复杂度为 $ O( n^{ log_2(7) } ) = O( n^3 )$,算法复杂度为 $ O( n^{ log_2(7) } ) $。理论上存在更快的算法 Coppersmith–Winograd algorithm,但是这个算法在当代硬件下显得不切实际。

Ref

转载于:https://www.cnblogs.com/nrblog/p/4769728.html

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值