函数对象、名称空间和作用域、闭包函数、装饰器

一、函数对象:
  函数名就相当于变量名,把函数的内存地址当作一种变量值(一种数据类型)去使用
  在面向对象编程中,一切皆对象
  具体的体现:
    1.函数可以被引用
    2.函数可以作为函数的参数
    3.函数可以作为函数的返回值
    4.函数可以存储到容器类型中

二、函数嵌套:
  1.嵌套定义
  def outer():
    def inner():
    pass
  2. 嵌套调用
  def max2(x, y):
    if x > y:
      return x
    else:
      return y

  def max4(a, b, c, d):
    res1 = max2(a.b)
    res2 = max2(res1, c)
    res3 = max2(res2, d)
    return res3

三、名称空间和作用域
名称空间:
  1.什么是名称空间:
    存放名字与值内存地址绑定关系的地方
    x=10
    x:10的内存地址

  2.为什么要有名称空间:

  3.如何用内存空间:
    内置名称空间:存放py解释器自带的函数名称
      parcharm解释器启动时创建,关闭解释器时销毁

    全局名称空间:文件级别的名称:除了内置名称和函数内名称,其余都是全局名称
      运行文件时创建,所有文件运行结束或者中途删除时销毁

    局部名称空间:函数内定义的名称
      调用函数时创建,函数执行完毕销毁

    查找名称顺序:
      1.查找名字的顺序是从当前位置往外查找
      2.名称空间的嵌套关系是在函数定义阶段就固定死的,与调用的位置没关系
      函数的作用域在定义时就固定了,与调用的位置没关系

    名称空间的加载顺序:
      内置>全局>局部
    名称空间的查找顺序:
      局部>全局>内置 (不能反着找)

作用域:
  域指的是区域、范围
    即全局范围:全局存活 全局有效
    无论在任何位置都能看的到

  全局的名称空间和内置的名称空间 在使用上没什么区别
  局部的和全局的内置的 就有区别了 局部定义的只能在局部使用

  全局的 和 内置的可以划分为同一个范围
  global 表示的是全局范围 就是所谓的全局作用域

  局部的单独一个范围
  local 局部作用域

  globals() 查看全局作用域中的内容
  locals()查看局部作用域中的内容 (相对局部,站在什么位置看就是哪个局部,
    比如你在全局作用域中使用locals,看到的就是全局作用域的内容)

 


四、闭包函数:

  1.什么是闭包函数
    闭函数:该函数一定是定义在函数内的函数
    包函数:该内部函数包含对外层函数作用域名字的引用

  2.为何要用闭包函数
    传值

  3.如何用
  为函数体传值的方案一:直接参数传
  def f():
    print(x)

  为函数体传值的方案二:闭包传值
  def outer(x):
    def f():
      print(x)
    return f

  f1 = outer(10)
  f2 = outer(11)

  f1()

  f2()

五、装饰器
  1.什么是装饰器
    装饰器指的是为被装饰对象添加新功能的工具
    装饰器本身可以是任意可调用的对象
    被装饰对象本身也可以是任意可调用对象

  2.为何要用装饰器
    开放封闭原则:对修改封闭,对扩展开放

    装饰器的原则:
      1.不能修改被装饰对象的源代码
      2.不能修改被装饰对象的调用方式

    装饰器的目的:
      就是在遵循原则1和2的前提下,为被装饰对象添加新功能

  3.如何用

    1.源函数
    def index():
      time.sleep(1)
      print('welcome to index page')

    2.添加功能
    import time
    def index():
      time.sleep(1)
      print('welcome to index page')

    def outer(func):
      # func=最原始那个index的内存地址
      def wrapper(*args,**kwargs):
        start_time = time.time()
        res=func(*args,**kwargs):#最原始那个index的内存地址
        end_time = time.time()
        print('time is %s' %(end_time - start_time))
        return res
      return wrapper

    index=outer(index) #index=outer(最原始那个index的内存地址) index=wrapper的内存地址
    index() #wrapper的内存地址()
        # 偷梁换柱 用户并不知道

    3.语法糖
    import time
    def outer(func):
      # func=最原始那个index的内存地址
      def wrapper(*args,**kwargs):
        start_time = time.time()
        res=func(*args,**kwargs):#最原始那个index的内存地址
        end_time = time.time()
        print('time is %s' %(end_time - start_time))
        return res
        return wrapper

      @outer #index=outter(index)
      def index():
        time.sleep(1)
        print('welcome to index page')
      index()

    总结:

      要写一个装饰器,先定义一个新函数例如def inner():,写要添加的功能,写好之后打包。

      所谓打包其实有固定的套路,在新函数同级头下写return inner,在新函数同级头上写参数func=index(index为源函数名)

      定义一个外函数def outer():,将写好的新函数上下三行,统一缩进,打包进外函数内。就可以了

      使用语法糖,调用装饰器运行源函数即可。

 

转载于:https://www.cnblogs.com/zhangxin-/p/10039309.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值