Codeforces 433A (背包)

本文解析了一道类似NOIP风格的01背包问题,通过调整数的单位和构造背包模型,将问题转化为判断是否能通过组合给定数值达到目标容量。采用逆向遍历更新状态的方式,最终判断是否能将苹果平分给两位角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面

传送门

真是令人胃疼的题面

我不管,我要把苹果都给雪菜!(滑稽)(冬马党不要打我)

分析

突然感觉这题跟今年NOIP Day1T2有点像,都是根据数加减来构造背包,只不过这题是01背包而不是完全背包

背包模型:

设总和为sum,则容量为sum/2

其实本题不需要代价,dp[j]为1表示容量为j时能装满,否则不能

直接 dp[j]=dp[j-a[i]] (dp[j-a[i]]>0)即可

代码

#include<iostream>
#include<cstdio>
#define maxn 105
using namespace std;
int n;
int a[maxn];
int dp[maxn*2];
int main(){
    scanf("%d",&n);
    dp[0]=1;
    int sum=0;
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        a[i]/=100;
        sum+=a[i];
    }
    if(sum%2==1){
        printf("NO\n");
    }else{
        for(int i=1;i<=n;i++){
            for(int j=n*2;j>=0;j--){
                if(dp[j]) dp[j+a[i]]=1;
            }
        }
        if(dp[sum/2]) printf("YES\n");
        else printf("NO\n");
    }
}

转载于:https://www.cnblogs.com/birchtree/p/10062756.html

### 关于Codeforces平台上的动态规划题 在Codeforces这样的编程竞赛平台上,动态规划(Dynamic Programming, DP)是一类非常重要的算法技术。这类题目通常涉及优化子结构和重叠子题两个特性。 #### 动态规划示例解析 考虑一个典型的DP题,在给定条件下求解最优方案的数量具体路径等题。例如,在某些情况下,可能需要计算达到特定状态所需的最少步数是最大收益等[^1]。 对于具体的例子而言,假设有一个序列`a[]`,目标是从左到右遍历此序列并决定是否选取当前元素加入集合中,最终目的是让所选元素之和尽可能大而不超过某个上限值M。这个题可以通过定义二维数组dp[i][j]表示从前i个物品里挑选若干件放入容量为j的背包可以获得的最大价值来建模: - 如果不取第i项,则`dp[i][j]=dp[i−1][j]`; - 若选择第i项且其重量w不超过剩余空间j,则更新为`max(dp[i−1][j], dp[i−1][j-w]+v)`其中v代表该项的价值; 最后的结果保存在`dp[n][m]`处(n为总项目数量,m为目标体积)[^2]。 ```cpp #include <iostream> using namespace std; const int N = 1e3 + 5; int w[N]; // weights of items int v[N]; // values of items long long f[N][N]; void knapsack(int n, int m){ for (int i = 1; i <= n; ++i) { for (int j = 0; j <= m; ++j) { f[i][j] = f[i - 1][j]; if(j >= w[i]) f[i][j] = max(f[i][j],f[i - 1][j - w[i]] + v[i]); } } } ``` 上述代码展示了如何利用记忆化搜索的方式实现简单的0/1背包题解决方案,这同样适用于其他形式更复杂的动态规划挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值