第十章


常微分方程基本解题思路

 

  •  重要的概念:通解,阶数,线性(非线性)
  •  建议化成标准形式,重点注意阶数以及线性 (可利用下面解题思路考虑课后习题练习)
  • 一阶微分方程:

\[
\begin{cases}
\mbox{一阶线性:} \quad
y' + P(x) y =Q(x) \quad \mbox{(直接公式)}
\\[4ex]
\mbox{一阶非线性 (可从简到难依次尝试): }
\begin{cases}
\mbox{分离变量法} \\[2ex]
\mbox{齐次方程} \\[2ex]
\mbox{伯努利方程} \\[2ex]
\mbox{把 $x$ 看成因变量:即考虑 } {dx \over dy}=f(x,y)
\\[2ex]
\mbox{适当的变换 例: (10-3-2)} \\[2ex]
\mbox{全微分或积分因子}
\end{cases}
\end{cases}
\]

  •  二阶微分方程:

\[
\begin{cases}
\mbox{二阶线性常系数齐次:} \quad
y'' + p y'+q y=0 \quad \mbox{(特征方程)}
\\[4ex]
\mbox{二阶线性常系数非其次 $y'' + p y'+q y=f(x)$:}
\begin{cases}
\mbox{其通解为相应齐次方程通解+满足该非齐次方程特解 $y^*$} \\[2ex]
\mbox{若 } f= P_m(x) e^{\lambda x}, \mbox{则可设 } y^*=x^kQ_m(x) e^{\lambda x}
\\[2ex]
\mbox{若 } f= e^{\lambda x}[P_l(x)\cos \omega x +P_n(x) \sin \omega x], \\[2ex]
\qquad \mbox{则可设 } y^*=x^k e^{\lambda x}[R_m^{(1)}(x) \cos \omega x +R^{(2)}_m(x) \sin \omega x]
\\[2ex]
\mbox{若 } f(x) \mbox{ 可看成} f=f_1+f_2, \mbox{ 则分别求出 $y_1^*$, $y_2^*$, 再得 $y^*=y_1^*+y_2^*$}
\end{cases}
\\[4ex]
\mbox{一般的二阶线性微分方程: }
\begin{cases}
\mbox{不含有 $y$ 的情况 } y''=f(x,y') \\[2ex]
\mbox{不含有 $x$ 的情况 } y''=f(y,y') \\[2ex]
\mbox{更一般的情况}
\begin{cases}
\mbox{ 通解等于两个线性无关的特解的组合}\\[2ex]
\mbox{若知道一个特解,可由刘维尔公式求出另一个}\\[2ex]
\mbox{对应非齐次方程两个特解的差可得齐次方程的一个特解}
\end{cases}
\end{cases}
\end{cases}
\]

  •  高阶方程: 降阶

 

 

 

  • 习题 10-2


1.

(2)
\[
y-xy' =a(y^2 +y')
\]
解: 原式可写成
\[
y'= \frac{y-a y^2}{a+x},
\]
变量分离得
\[
\frac{dy}{ y -a y^2}=\left(
\frac{1}{y} +\frac{a}{1-ay}
\right) dy = \frac{dx}{a+x},
\]
两边积分得
\[
\frac{y}{1-ay} =C(a+x).
\]
(注意该方程同样是伯努利方程,不过显然分离变量比较容易解决,重新思考下上面提到的基本解题思路,从简到难的原则)

3. 根据条件有
\[
f(x) =\int_0^x f(t)dt,
\tag{1}
\]
两边关于 $x$ 求导数得
\[
f'(x)=f(x)
\]
利用分离变量法直接求解得
\[
f(x) = C e^x,
\]
在式子 (1) 中令 $x=0$ 得 $f(0)=0$, 因此 $C=0$, 即
\[
f(x) \equiv 0.
\]


4. 因为
\[
\int_0^1 [ f(x) +x f(xt) ] dt =
f(x) + x \int_0^1 f(xt) dt
=f(x) + \int_0^1 f(xt) d(xt)
=f(x) + \int_0^x f(s) ds,
\]
对上式关于 $x$ 求导数,根据题意该积分与 $x$ 无关,因此
\[
\left( f(x) + \int_0^x f(s) ds\right)'
= f'(x) +f(x)=0.
\]
所以
\[
f(x) = C e^{-x},
\]
其中 $C$ 为任意常数。下面确定 $C$, 因为积分与 $x$ 无关,所以令 $x=0$ 得
\[
f(0)=C,
\]
所以
\[
f(x)=f(0) e^{-x}.
\]


8. 解: 设盐含量的函数为 $u(t)$, 其中 $t$ 为时间。具体来说,表示 $t$ 时刻容器里的盐含量为 $u(t)$, 它满足初值条件 $u(0)=10$. 根据题意得到方程
\[
u'(t) = - \frac{2}{100+t} u(t),
\]
分离变量解得
\[
u(t)= \frac{C}{(t+100)^2},
\]
由初值条件得 $C=10^5$, 则直接计算得
\[
u(60) \approx 3.9.
\]

 

 

  • 习题 10-3


2.

(1) 令 $u=x+2y$, 则 $u'=2y'+1$, 因此原方程可写成
\[
u'-1 = \frac{2}{u^2},
\]
因此
\[
\left ( 1- \frac{2}{2+u^2}\right) du = dx
\]
两边积分解得
\[
u -\sqrt 2 \arctan \frac{u}{\sqrt 2} =x +C
\]
所以原方程的解为
\[
2y -\sqrt 2 \arctan \frac{x+2y}{\sqrt 2} =C.
\]


(2) 考虑代换 $x=X+h$, $y=Y+k$, 并令
\[
\begin{cases}
k-h +1 =0 \\
k+h+5=0
\end{cases}
\]
解得
\[
k=-3, \qquad h =-2.
\]
即在代换 $X=x+2$, $Y=y+3$ 下原方程可化为
\[
\frac{ d Y}{d X} = \frac{Y -X}{X +Y}
\]
令 $u= Y/X$ 则方程可化为
\[
u + X \frac{d u}{d X} =\frac{u-1}{1+u},
\]
该方程可化为
\[
- \frac{u+1}{1+u^2} du = \frac{d X}{X}
\]
解得
\[
\ln( 1+u^2 )
+2 \ln (X) +2\arctan u=C,
\]
因此,原方程的解是
\[
\ln [ (x+2)^2 +(y+3)^2 ] +2
\arctan \left (
{ y+3 \over x+2 }
\right ) =C.
\]


(5) 原方程可写成
\[
2y \frac{dy}{dx}= \frac{x-y^2}{x+y^2}
\]
因此,
\[
\frac{d(y^2)}{dx}= \frac{x-y^2}{x+y^2}
\]


(6) 原方程可写成
\[
\frac{1}{\cos^2 y} y'
+ 2 x \tan y = 2 x e^{-x^2},
\]
因此
\[
(\tan y )' +2 x \tan y = 2 x e^{-x^2}
\]
令 $u=\tan y$ 则
\[
u' + 2x u =2x e^{-x^2}.
\]

 

  • 习题 10-4

1.


(8) 原式可写成
\[
{ dy \over dx }
= { y\ln y \over \ln y -x},
\]
考虑调换 $x$ 与 $y$ 的位置得
\[
{ dx \over dy }
= { \ln y -x \over y\ln y }= -{1\over y \ln y} x + {1\over y},
\]
即该方程可看成关于 $y$ 的一阶线性微分方程。
(或者原方程写为
\[
{1 \over y}{ dy \over dx }
= { \ln y \over \ln y -x}
\]

\[
{ d(\ln y) \over dx }
= { \ln y \over \ln y -x}
\]
)

 

 

(10) 原式可看成
\[
{ dx \over dy} = { 6x -y^2 \over 2y }
\]
是 $x(y)$ 关于$y$ 的一阶线性微分方程。或者看成
\[
y{ dy \over dx } = { 2y^2 \over 6x-y^2 }
\]
令 $u=y^2$ 即可。
(因此,一阶方程往往不止一个方法,所以按照解题思路使用合适的方法从简到难)

 

  • 习题 10-5


首先注意,若
\[
\left ( \frac{\partial Q}{\partial x} -
\frac{\partial P}{\partial y} \right ) / P
\]
只与 $y$ 有关,则我们可以考虑积分因子是关于 $y$ 的函数 $\mu(y)$ 且
\[
\mu'(y) /\mu(y)= \left ( \frac{\partial Q}{\partial x} -
\frac{\partial P}{\partial y} \right ) / P
\]
反过来,如果
\[
\left ( \frac{\partial P}{\partial y}- \frac{\partial Q}{\partial x}
\right ) / Q
\]
只与 $x$ 有关的话,我们可以考虑积分因子 $\mu(x)$ 满足
\[
\left ( \frac{\partial P}{\partial y}- \frac{\partial Q}{\partial x}
\right ) / Q
= \mu'(x)/\mu(x).
\]
如果积分因子既与 $x$ 有关,又与 $y$ 有关,那么就比较复杂,那么我们可以采用的办法是,先分组,每组先写成全微分的形式,然后最后再考虑两组之间的公共因子。我们以书上 p. 221 最后一段的例子为例。书上讨论了方程
\[
(1+xy) y dx + (1-xy) xdy =0,
\]
书上说可观察出积分因子为 ${1 \over x^2 y^2}$. 现在讨论如何估计出它。首先将式子分组,即 $(1+xy) y dx + (1-xy) xdy=0$ 可写成
\[
(y dx +xdy) +(xy^2 dx -x^2 y dy)=0
\tag{*}
\]
考虑这样的分组的原因是,第一组明显可写成一个全微分形式,即
\[
y dx +xdy = d(xy),
\]
现在考虑第二组,由上面积分因子的讨论,容易验证其有一个只与 $x$ 有关的积分因子 ($1/x^4$), 因此我们把 $(*)$ 写成
\[
d(xy) + x^4 \cdot {1 \over x^4} ( xy^2 dx -x^2 y dy )
= d(xy) + x^4 d\left( -\frac12 {y^2 \over x^2} \right)=0,
\]
接下来所有的困难时需要把 $x^4$ 消掉,为了不破坏已有的全微分的结构,我们希望两边乘以一个函数,既与 $xy$ 有关又能和 $x^4$ 组合成 $y^2/x^2$。第一个尝试是两边乘以 $xy$, 那么得
\[
xy d(xy)+ x^5y d\left( -\frac12 {y^2 \over x^2} \right)=0,
\]
第一组 $xyd(xy)$ 可写成 $d( \frac12 (xy)^2 )$, 但是第二组无法改变。所以尝试其他可能,发现两边除以 $x^2y^2$, 此时得
\[
\frac{1}{x^2y^2} d(xy) + { x^2 \over y^2 } d\left( -\frac12 {y^2 \over x^2} \right)=0
\]
此时两组都可以写成全微分的形式,即
\[
d\left( - {1 \over x y} \right) + d\left( -\frac12 \ln \left( {y^2 \over x^2}\right) \right)=0
\]
所以积分因子为 ${1\over x^2 y^2}$ 就是这么来的,关键在于分组以及找公共因子(类似于高中找最小公倍数)

 

 

2.

(1) 左右两边除以 $(x+y)$ 则
\[
d x - dy = \frac{1}{x+y} (dx +dy)
\]
因此
\[
d(x-y)= d(\ln (x+y) )
\]
解得
\[
x-y -\ln(x+y)=C.
\]
(实际上,该方程可写成
\[
{dy \over dx} ={ x+y-1 \over x+y+1 }
\]
即齐次方程
)

(2) 整理下得
\[
(y^2x +y) dx -x dy=0
\]
如何得到积分因子不建议写到试卷里。考试的时候就用这个办法算出来后,然后直接说我们看到积分因子是什么就可以了。


{\color{blue} ( 写在草稿纸上哦~ 令 $P= y^2 x +y$, $Q=-x$, 因为
\[
\left ( \frac{\partial Q}{\partial x} -
\frac{\partial P}{\partial y} \right ) / P= -2/y
\]
只与 $y$ 有关,因此积分因子 $\mu(y)$ 可取满足下列条件
\[
\mu'(y)/\mu(y) =-\frac{2}{y}
\]

\[
\mu(y)= 1/y^2.
\]
)
}

 

在原式中两边乘以 $1/y^2$ 得
\[
x dx +\frac{1}{y}dx - \frac{x}{y^2} dy=0
\]
推出
\[
d(\frac12 x^2 + x/y)=0
\]
因此
\[
\frac12 x^2 +\frac x y=C.
\]
(实际上,该方程可写成
\[
{dy \over dx} = {y \over x} +y^2
\]
即伯努力方程,如果没有要求用积分因子法求解,那么优先使用伯努力方程解法,因为简单!
)

  •  习题 10-6 


1. (7)
\[
y''= (y')^3 +y'
\]
解: 令 $p=y'(x)$, 则原方程可写成
\[
p \frac{d p}{d y}= p^3 +p,
\]
即 $p=0$ 或者
\[
\frac{dp }{dy }= p^2 +1,
\]
利用分离变量法求解上面方程,由于
\[
\frac{d p}{p^2 +1} = dy
\]
两边积分得
$
\arctan p = y +C_1,
$

$
y'=\tan(y+C_1).
$
分离变量得
\[
\frac{\cos(y+C_1)}{ \sin(y+C_1) } dy=dx,
\]
两边积分得
\[
\ln( \sin(y+C_1) ) =x +C,
\]
因此,
\[
y= \arcsin ( C_1’ e^{ x }) +C_2'.
\]
而当 $p=0$ 时可推出 $y=C'$, 而上式令 $C_1'=0$ 即给出 $y=C'$, 所以上式包含了该方程所有的解。

 

(8)
\[
(y''')^2 +(y'')^2=1
\]
解: 令 $u=y''$, 则原方程得
\[
(u')^2+u^2=1,
\]

\[
u' = \pm \sqrt{1-u^2}.
\]
先考虑 $u'=\sqrt{1-u^2}$, 由分离变量得
\[
\frac{du}{\sqrt{1-u^2}} =dx,
\]
两边积分得
\[
u=\sin(x+C_1),
\]
即 $y''= \sin(x+C_1)$, 两边积分两次得
\[
y= -\sin(x+C_1) +C_2 x +C_3.
\]
同理根据 $u'=-\sqrt{1-u^2}$ 解得
\[
y=-\sin(-x+C_1)+C_2 x+C_3.
\]


2.

(2)
\[
\begin{cases}
2y''=\sin 2y, \\[2ex]
y\big|_{x=0} =\dfrac{\pi}{2}, \quad
y'\big|_{x=0}=1
\end{cases}
\]
解: 令 $p=y'$, 则 $y''=p \frac{dp}{dy}$ 代入原方程得
\[
2 p \frac{d p}{d y} =2\sin y \cos y,
\]
分离变量得
\[
2p dp = 2\sin y\cos y dy,
\]
两边积分得
\[
p^2 = \sin^2 y+C.
\]
根据 $ y\big|_{x=0} =\dfrac{\pi}{2}, \quad
y'\big|_{x=0}=1$ 得 $C=0$, 即 $p=\pm \sin y $。再根据初值条件得
\[
p=\sin y.
\]
变量分离得
\[
\frac{dy}{\sin y} =dx
\]

\[
\frac{\sin y}{1-\cos^2 y} dy =dx,
\]
两边积分得
\[
\frac12 \ln( 1-\cos y ) - \frac12 \ln (1+\cos y) =x+C.
\]
由初值条件推出 $C=0$. 由上式得
\[
\sqrt{\frac{1-\cos y}{1+\cos y}} =e^x,
\]
利用三角函数万能公式以及初值条件得
\[
\tan \frac y2 =e^x.
\]
即 $y= 2\arctan e^x $.

 


(3)
\[
\begin{cases}
y' y'''= 3 (y'')^2, \\[2ex]
y(0)=0, \quad
y'(0)=1, \quad y''(0)=1.
\end{cases}
\]
解: 令 $u=y'$, 则原方程得
\[
\begin{cases}
u u''= 3 (u')^2, \\[2ex]
u(0)=1, \quad
u'(0)=1.
\end{cases}
\]
再令 $p=u'$, 则 $u''=p\dfrac{dp}{d u}$ 代入原方程得
\[
p u \frac{dp}{du} = 3 p^2,
\]
当 $p\neq 0$ 时分离变量求得 $p =C u^3$, 由初值条件 $p(0)=y''(0)=1$ 以及 $u(0)=y'(0)=1$ 得
\[
p= u^3,
\]
即 $u'=u^3$, 分离变量得
\[
u^2 =- \frac{1}{2(x+C)},
\]
由初值条件得 $ u^2 = \frac{1}{1-2x}$, 再由初值条件得
\[
\frac{dy}{dx}=u =\frac{1}{\sqrt{1-2x}},
\]
分离变量并两边积分得
\[
y= C-\sqrt{1-2x},
\]
由初值条件 $y(0)=0$ 推出 $C=1$ 即
\[
y=1-\sqrt{1-2x}.
\]

 

  • 习题 10-7

2.

(1) 若 $y_1$ 和 $y_2$ 是二阶非齐次线性方程
\[
y'' + P(x) y' +Q(x)y =f(x)
\tag{1}
\]
的两个不同特解, 下证其线性无关。假设 $y_1$ 与 $y_2$ 线性相关,即存在一个 $k\neq=0$ 使得
\[
y_2 =k y_1.
\]
因为 $y_2$ 是上述方程的解,将上式代入方程 (1) 有
\[
k y_1'' + kP(x) y_1' +k Q(x) y_1 =f(x),
\]
又由于 $y_1$ 也是该方程 (1) 的解,因此上式可写为
\[
k f(x) =f(x).
\]
根据题意, 该方程为非齐次方程,所以 $f(x)\neq 0$, 因此 $k=1$. 与题设 $y_1$, $y_2$ 是两个线性无关的解矛盾。根据反证法,$y_1$ 与 $y_2$ 线性无关。


(2) 直接验证即可


3. 因为 $y_1-y_2$ 以及 $y_2-y_3$ 是相应二阶齐次线性方程的特解,下证其线性无关。假设 $k_1$ 和 $k_2$ 是常数,并且使得
\[
k_1 (y_1-y_2) +k_2 (y_2-y_3)=0.
\]
由于上式可写为
\[
k_1 y_1 +(k_2-k_1) y_2 -k_2 y_3 =0,
\]
又根据 $y_1$, $y_2$ 以及 $y_3$ 线性无关,推出 $k_1=k_2=0$, 因此 $y_1-y_2$ 以及 $y_2-y_3$ 线性无关。所以二阶非齐次线性方程 (1) 的通解可写为
\[
y= C_1 (y_1 -y_2) +C_2(y_2 -y_3) + y_3.
\]

 

  • 习题 10-8

 

1. (6)
考虑方程
\[
y^{(4)} -6y''' +12 y''-8y'=0
\]
对应的特征方程
\[
r^4 -6r^3 +12 r^2-8r=0.
\]
容易看成 $r=0$ 是其中一个解, 因此两边除以 $r$ 可写成
\[
r^3 -6r^2 +12 r -8=0,
\]
可验证 $r=2$ 为其一个解,由多项式除法容易得到
\[
r^4 -6r^3 +12 r^2-8r=r(r-2)^3=0.
\]
根据线性常系数微分方程的解的结构,很容易得到其对应的四个线性无关解分别为
\[
y_1 = 1,
\qquad y_2= e^{2x},
\qquad y_3 =xe^{2x},
\qquad y_4 =x^2 e^{2x}.
\]
因此,该方程的通解为
\[
y= C_1+ C_2 e^{2x} +C_3 x e^{2x} +C_4 x^2 e^{2x}.
\]


(8)
方程
\[
y^{(4)} -4y =0,
\]
对应的特征方程为
\[
r^4 -4 =0,
\]
解得
\[
(r^2-2)(r^2+2)=0,
\]
因此
\[
r_1 = \sqrt 2, \quad r_2=-\sqrt 2,
\quad r_3= i\sqrt 2, \quad
r_4=-i\sqrt 2.
\]
所以该方程的通解为
\[
y= C_1 e^{\sqrt 2 x}
+ C_2 e^{-\sqrt 2 x}
+C_3 \cos (\sqrt 2 x)
+C_4 \sin (\sqrt 2 x).
\]

 

 

  • 习题 10-9

2.

(9)
\[
y''+y =e^x +\cos x
\]
解: 这是二阶常系数非齐次线性微分方程,首先分别考虑下列方程
\[
y''+ y= e^x
\tag{1}
\]
以及
\[
y''+y= \cos x
\tag{2}
\]
的解。此时, 方程 (1) 以及方程 (2) 均为二阶常系数非齐次线性微分方程,并且方程 (1) 中的 $f(x)$ 是 $P_m(x) e^{\lambda x}$ 型 (其中 $P_m(x)=1$, $\lambda=1$).


而方程 (1) 对应的齐次线性微分方程为
\[
y''+y =0,
\]
它的特征方程为
\[
r^2 +1=0.
\]
由于 $\lambda =1$ 不是特征方程的根,所以应设特解为
\[
y^*_1 = a e^x,
\]
代入方程 (1) 得
\[
2a e^x =e^x,
\]
比较同类项系数得 $a=1/2$, 于是得一个特解 $y_1^*= \frac12 e^x$.


另外, 方程 (2) 中的 $f(x)$ 是 $e^{\lambda x}[P_l(x) \cos\omega x +P_n \sin \omega x]$ 型 (其中 $P_l(x)=1$, $P_n(x)=0$, $\omega=1$, $\lambda=0$).
由于 $\lambda + i\omega =i$ 是特征方程的根,所以应设特解为
\[
y^*_2 = x ( a \cos x + b\sin x ),
\]
代入方程 (2) 得
\[
-2a \sin x+2b\cos x =\cos x
\]
比较同类项系数得 $a=0$ 以及 $b=1/2$, 于是得一个特解 $y_2^*= \frac x2 \sin x$.


因此,原方程的通解为
\[
y=C_1 \cos x +C_2 \sin x + \frac12 e^x +\frac 12 x\sin x.
\]

 

(10)
\[
y''-y =\sin^2 x.
\]
解: 原方程可写为
\[
y''- y =\frac12 (1-\cos 2x).
\]
这是二阶常系数非齐次线性微分方程,首先分别考虑下列方程
\[
y''- y= \frac12
\tag{1}
\]
以及
\[
y''+y= -\frac12 \cos 2x
\tag{2}
\]
的解。此时, 方程 (1) 以及方程 (2) 均为二阶常系数非齐次线性微分方程.

首先, 方程 (1) 中的 $f(x)$ 是 $P_m(x) e^{\lambda x}$ 型 (其中 $P_m(x)=1/2$, $\lambda=0$). 而方程 (1) 对应的齐次线性微分方程为
\[
y''-y =0,
\]
它的特征方程为
\[
r^2 -1=0.
\]
由于 $\lambda =0$ 不是特征方程的根,所以应设特解为
\[
y^*_1 = a,
\]
代入方程 (1) 得
$
a=-\frac 12,
$
于是得一个特解 $y_1^*= -\frac12$.


另外, 方程 (2) 中的 $f(x)$ 是 $e^{\lambda x}[P_l(x) \cos\omega x +P_n \sin \omega x]$ 型 (其中 $P_l(x)=-1/2$, $P_n(x)=0$, $\omega=2$, $\lambda=0$).
由于 $\lambda + i\omega =2i$ 不是特征方程的根,所以应设特解为
\[
y^*_2 = a \cos 2x + b\sin 2x,
\]
代入方程 (2) 得
\[
-5a \cos 2x -5b \sin 2x =-\frac12 \cos 2x
\]
比较同类项系数得 $a=1/10$ 以及 $b=0$, 于是得一个特解 $y_2^*= \frac 1{10} \cos 2x$.


因此,原方程的通解为
\[
y=C_1 e^x +C_2 e^{-x} + \frac 1{10} \cos 2x -\frac 12.
\]

 

转载于:https://www.cnblogs.com/mmmmmm6m/p/4542675.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值