- 朴素解法,复杂度On2,只能过一半的点。
#include<bits/stdc++.h>
using namespace std;
typedef struct{
int num;
int len;
int dlen;
}Missile;
Missile miss[100010];
int cnt=0,n=1,maxnum=0,maxl=0;
int main()
{
while(cin>>miss[n].num){
n++;
}
n--;
for(int i=n;i>=1;i--)
{
for(int j=i;j<=n;j++)
{//dp
if(miss[i].num>=miss[j].num)
{
miss[i].len=max(miss[i].len,miss[j].len+1);
}
if(miss[i].num<miss[j].num)
{
miss[i].dlen=max(miss[i].dlen,miss[j].dlen+1);
}
}
}
for(int i=1;i<=n;i++)
{
cout<<miss[i].len<<" | "<<miss[i].dlen<<endl;
maxl=max(miss[i].len,maxl);
maxnum=max(miss[i].dlen,maxnum);
}
cout<<maxl<<endl<<maxnum+1<<endl;
return 0;
}
- 分析题意可知求一个最长不升子序列,和一个最长上升子序列,转换为LIS线性dp求解,复杂度为Onlogn
#include<bits/stdc++.h>
using namespace std;
int arr[100010],le[100010],gt[100010];
int p1,p2;
int main()
{
int n=1;
while(cin>>arr[n])n++;
n--;
le[1]=gt[1]=arr[1];
p1=p2=1;
for(int i=2;i<=n;i++)
{
if(arr[i]<=le[p1])le[++p1]=arr[i];//下降不升子序列,求最多打下数目
//10 8 6 +7 需要替换6 +8替换6
else le[upper_bound(le+1,le+p1+1,arr[i],greater<int>())-le]=arr[i];
if(arr[i]>gt[p2])gt[++p2]=arr[i];//上升子序列,求系统数目
//1 3 5 7 +5 替换5 +6替换7
else gt[lower_bound(gt+1,gt+p2+1,arr[i])-gt]=arr[i];
}
cout<<p1<<endl<<p2;
return 0;
}