poj3155 Hard Life

传送门

最大密度子图

(话说看到这个名字完全想不到网络流...)

用上了之前的最大权闭合图

然后这个密度的表达式容易想到分数规划

所以...

(1) 初始思路:

直接二分答案g 然后造一个二分图

二分的范围显然是0~m(其实是1/(n*n)~m 整个eps就行)

左部图中的点向右部图中的边连边

然后点连源点(g),边连汇点(1) 跑最大权闭合

 

其实这个初始思路就很优秀了

但是

 --By 《最小割模型在信息学竞赛中的应用》 Amber

(网络流想不出来总可以试试最小割)

点权挂着个g不好缩 我们缩一下边权

考虑选择每个点的花费 就是(g-du[i] / 2)

但是这样有一个负数的问题所以统一加上一个m然后减去 同理可以*2 再除掉

整理一下:

(2) 最终建图

1.每个点向源点连边(m) 汇点连边(m+2g-du[i])

2.原图中的边边权为1

3.最终的最小割是(m*n-maxflow)/2 (简算修正)

 

这题注意最后求答案之前建个答案的图 因为二分会乱

Code:

  1 #include<cstdio>
  2 #include<cstring>
  3 #include<queue>
  4 #include<iostream>
  5 #include<algorithm>
  6 #define ms(a,b) memset(a,b,sizeof a)
  7 #define rep(i,a,n) for(int i = a;i <= n;i++)
  8 #define per(i,n,a) for(int i = n;i >= a;i--)
  9 #define inf 2147483647
 10 using namespace std;
 11 typedef long long ll;
 12 ll read() {
 13     ll as = 0,fu = 1;
 14     char c = getchar();
 15     while(c < '0' || c > '9') {
 16         if(c == '-') fu = -1;
 17         c = getchar();
 18     }
 19     while(c >= '0' && c <= '9') {
 20         as = as * 10 + c - '0';
 21         c = getchar();
 22     }
 23     return as * fu;
 24 }
 25 const int N = 2005;
 26 const int M = 10005;
 27 typedef double D;
 28 #define eps 1e-9
 29 //head
 30 int s = N-2,t = N-1;
 31 int head[N],nxt[M],mo[M],cnt = 1;
 32 D cst[M];
 33 void _add(int x,int y,D w) {
 34     mo[++cnt] = y;
 35     cst[cnt] = w;
 36     nxt[cnt] = head[x];
 37     head[x] = cnt;
 38 }
 39 void add(int x,int y,D w) {
 40     if(x^y) _add(x,y,w),_add(y,x,0.0);
 41 }
 42 
 43 int dep[N],cur[N];
 44 bool bfs() {
 45     queue<int> q;
 46     memcpy(cur,head,sizeof cur);
 47     ms(dep,0),q.push(s),dep[s] = 1;
 48     while(!q.empty()) {
 49         int x = q.front();
 50         q.pop();
 51         for(int i = head[x];i;i = nxt[i]) {
 52             int sn = mo[i];
 53             if(!dep[sn] && cst[i] >= eps) {
 54                 dep[sn] = dep[x] + 1;
 55                 q.push(sn);
 56             }
 57         }
 58     }
 59     return dep[t];
 60 }
 61 
 62 D dfs(int x,D flow) {
 63     if(x == t || flow <= eps) return flow;
 64     D res = 0.0;
 65     for(int &i = cur[x];i;i = nxt[i]) {
 66         int sn = mo[i];
 67         if(dep[sn] == dep[x] + 1 && cst[i] >= eps) {
 68             D d = dfs(sn,min(cst[i],flow - res));
 69             if(d) {
 70                 cst[i] -= d,cst[i^1] += d;
 71                 res += d;
 72                 if(res == flow) break;
 73             }
 74         }
 75     }
 76     if(res != flow) dep[x] = 0;
 77     return res;
 78 }
 79 
 80 int m,n;
 81 struct node {
 82     int x,y;
 83 }a[N];
 84 int du[N];
 85 
 86 D solve(D g) {
 87     ms(head,0),cnt = 1;
 88     D ans = 0.0;
 89     rep(i,1,m) _add(a[i].x,a[i].y,1.0),_add(a[i].y,a[i].x,1.0);
 90     rep(i,1,n) {
 91         add(s,i,m);
 92         add(i,t,m - du[i] + (g * 2.0));
 93     }
 94     while(bfs()) ans += dfs(s,inf);
 95     return ((D)m*n - ans) / 2.0;
 96 }
 97 
 98 bool vis[N];
 99 int sum;
100 int getans(int x) {
101     for(int i = head[x];i;i = nxt[i]) {
102         int sn = mo[i];
103         if(vis[sn] || cst[i] <= eps) continue;
104         vis[sn] = 1,sum++;
105         getans(sn);
106     }
107 }
108 
109 int main() {
110     while(~scanf("%d%d",&n,&m)) {
111         if(m == 0) {
112             printf("1\n1\n");
113             continue;
114         }
115         ms(du,0);
116         rep(i,1,m) a[i].x = read(),a[i].y = read(),du[a[i].x]++,du[a[i].y]++;
117         D L = 0,R = (D)m;
118         while(R - L >= eps * 100) {
119             D mid = (L+R) / 2.0;
120             if(solve(mid) >= eps) L = mid;
121             else R = mid;
122         }
123 
124         solve(L);//!!!
125 
126         sum = 0,ms(vis,0),vis[s] = 1;
127         getans(s);
128         printf("%d\n",sum);
129         rep(i,1,n) if(vis[i]) printf("%d\n",i);
130     }
131     return 0;
132 }

 

转载于:https://www.cnblogs.com/yuyanjiaB/p/10014625.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值