BZOJ3277: 串(后缀自动机,Parent树,Dfs序)

Description

字符串是oi界常考的问题。现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中
至少k个字符串的子串(注意包括本身)。

Input

第一行两个整数n,k。
接下来n行每行一个字符串。
n,k,l<=100000

Output

输出一行n个整数,第i个整数表示第i个字符串的答案。

Sample Input

3 1
abc
a
ab

Sample Output

6 1 3

解题思路:

k个嘛,好像可以离线树状数组QAQ,具体的像这样,只不过需要将所有节点都询问一遍。

最后,找子串嘛,短的不多于k个长的肯定也不行,利用这个性质,只要不够k就跳pre,直到大于等于k。

而以这个节点为后缀的子串共有len个,ans+=len就好了。

代码:

  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 const int N=400000;
  5 struct sant{
  6     int tranc[26];
  7     int len;
  8     int pre;
  9 }s[N];
 10 struct pnt{
 11     int hd;
 12     int ind;
 13     int oud;
 14     int col;
 15     int ans;
 16 }p[N];
 17 struct ent{
 18     int twd;
 19     int lst;
 20 }e[N];
 21 struct int_2{
 22     int l;
 23     int r;
 24     int no;
 25 }d[N];
 26 int n,k;
 27 int siz;
 28 int dfn;
 29 int cnt;
 30 int fin;
 31 char tmp[N];
 32 int ll[N],rr[N];
 33 int col[N];
 34 int lst[N];
 35 int line[N];
 36 int str[N];
 37 int lowbit(int x)
 38 {
 39     return x&(-x);
 40 }
 41 void update(int pos,int x)
 42 {
 43     while(pos&&pos<=dfn)
 44     {
 45         line[pos]+=x;
 46         pos+=lowbit(pos);
 47     }
 48     return ;
 49 }
 50 int query(int pos)
 51 {
 52     int ans=0;
 53     while(pos)
 54     {
 55         ans+=line[pos];
 56         pos-=lowbit(pos);
 57     }
 58     return ans;
 59 }
 60 bool cmp(int_2 x,int_2 y)
 61 {
 62     return x.r<y.r;
 63 }
 64 void ade(int f,int t)
 65 {
 66     cnt++;
 67     e[cnt].twd=t;
 68     e[cnt].lst=p[f].hd;
 69     p[f].hd=cnt;
 70     return ;
 71 }
 72 void Insert(int c,int pl)
 73 {
 74     int nwp,nwq,lsp,lsq;
 75     nwp=++siz;
 76     s[nwp].len=s[fin].len+1;
 77     p[nwp].col=pl;
 78     for(lsp=fin;lsp&&!s[lsp].tranc[c];lsp=s[lsp].pre)
 79         s[lsp].tranc[c]=nwp;
 80     if(!lsp)
 81         s[nwp].pre=1;
 82     else{
 83         lsq=s[lsp].tranc[c];
 84         if(s[lsq].len==s[lsp].len+1)
 85             s[nwp].pre=lsq;
 86         else{
 87             nwq=++siz;
 88             s[nwq]=s[lsq];
 89             s[nwq].len=s[lsp].len+1;
 90             s[lsq].pre=s[nwp].pre=nwq;
 91             while(s[lsp].tranc[c]==lsq)
 92             {
 93                 s[lsp].tranc[c]=nwq;
 94                 lsp=s[lsp].pre;
 95             }
 96         }
 97     }
 98     fin=nwp;
 99 }
100 void Dfs(int x)
101 {
102     p[x].ind=++dfn;
103     col[dfn]=p[x].col;
104     for(int i=p[x].hd;i;i=e[i].lst)
105     {
106         int to=e[i].twd;
107         Dfs(to);
108     }
109     p[x].oud=++dfn;
110     col[dfn]=p[x].col;
111 }
112 int main()
113 {
114     scanf("%d%d",&n,&k);
115     if(k>n)
116     {
117         for(int i=1;i<=n;i++)
118             printf("%d ",0);
119         return 0;
120     }
121     fin=++siz;
122     for(int i=1;i<=n;i++)
123     {
124         ll[i]=rr[i-1]+1;
125         rr[i]=rr[i-1];
126         fin=1;
127         scanf("%s",tmp);
128         int len=strlen(tmp);
129         for(int j=0;j<len;j++)
130             str[++rr[i]]=tmp[j]-'a';
131         for(int j=ll[i];j<=rr[i];j++)
132         {
133             Insert(str[j],i);
134         }
135     }
136 
137     for(int i=2;i<=siz;i++)
138         ade(s[i].pre,i);
139     Dfs(1);    
140     for(int i=1;i<=siz;i++)
141         d[i]=(int_2){p[i].ind,p[i].oud,i};
142     std::sort(d+1,d+siz+1,cmp);
143     int r=1;
144     for(int i=1;i<=siz;i++)
145     {
146         while(r<=d[i].r)
147         {
148             if(!col[r])
149             {
150                 r++;
151                 continue;
152             }
153             if(lst[col[r]])
154                 update(lst[col[r]],-1);
155             update(r,1);
156             lst[col[r]]=r;
157             r++;
158         }
159         r--;
160         p[d[i].no].ans=query(d[i].r)-query(d[i].l-1);
161     }
162     for(int i=1;i<=n;i++)
163     {
164         int ans=0;
165         int root=1;
166         for(int j=ll[i];j<=rr[i];j++)
167         {
168             root=s[root].tranc[str[j]];
169             while(p[root].ans<k)
170                 root=s[root].pre;
171             ans+=s[root].len;
172         }
173         printf("%d ",ans);
174     }
175     puts("");
176     return 0;
177 }

 

转载于:https://www.cnblogs.com/blog-Dr-J/p/10046167.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值