题目:
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Given S = "rabbbit"
, T = "rabbit"
, return 3
.
题解:
Solution 1 ()
class Solution { public: int numDistinct(string &S, string &T) { int n1 = S.size(), n2 = T.size(); vector<vector<int>> dp(n2 + 1, vector<int>(n1 + 1, 0)); for (int i = 0; i <= n1; ++i) { dp[0][i] = 1; } for (int i = 1; i <= n2; ++i) { for (int j = 1; j <= n1; ++j) { if (T[i - 1] == S[j - 1]) { dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1]; } else { dp[i][j] = dp[i][j - 1]; } } } return dp[n2][n1]; } };
Notice that we keep the whole m*n
matrix simply for dp[i - 1][j - 1]
. So we can simply store that value in a single variable and further optimize the space complexity. The final code is as follows.
Solution 2 () from here
class Solution { public: int numDistinct(string s, string t) { int m = t.length(), n = s.length(); vector<int> cur(m + 1, 0); cur[0] = 1; for (int j = 1; j <= n; j++) { int pre = 1; for (int i = 1; i <= m; i++) { int temp = cur[i]; cur[i] = cur[i] + (t[i - 1] == s[j - 1] ? pre : 0); pre = temp; } } return cur[m]; } };