智能合约创建流程

参考资料:

Web3J官网:https://web3j.io/

以太网:http://www.ethdocs.org/en/latest/contracts-and-transactions/contracts.html

Ethereum Homestead

教程 | 以太坊智能合约编程之菜鸟教程:https://ethfans.org/posts/101-noob-intro

 

什么是智能合约

智能合约(英语:Smart contract )

是一种旨在以信息化方式传播、验证或执行合同的计算机协议。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。智能合约概念于1994年由Nick Szabo首次提出。

部署智能合约的案例有:
  • 以太坊在其区块链上实施了一种近乎图灵完备的语言,这是一个突出的智能合约框架。
  • RootStock(RSK) 是一个智能合约平台,通过侧链技术连接到比特币区块链。 RSK兼容为以太坊创造的智能合约。

核心概念

公钥加密系统:

点对点网络:

区块链:区块链可以看做是智能合约的基础设施

以太坊虚拟机:解释执行智能合约字节码的东西,功能类似于Java虚拟机

节点:

矿工:区块链中参与处理区块的节点叫做矿工。当前以太坊活跃的矿工:https://ethstats.net/

工作量证明:矿工们总是在竞争解决一些数学问题。第一个解出答案的(算出下一个区块)将获得以太币作为奖励。然后所有节点都更新自己的区块链。所有想要算出下一个区块的矿工都有与其他节点保持同步,并且维护同一个区块链的动力,因此整个网络总是能达成共识。

以太币:ETH,以太坊中的虚拟货币,可以购买和使用,也可以与真实货币交易。以太币的走势图

Gas:相当于手续费。在以太坊执行程序以保存数据都要消耗一定量的以太币。这个机制可以控制区块链中计算的数量,保证效率。

 

补充说明:GAS

定义

    Gas 翻译成中文就是“燃气”,是以太坊世界的燃料,它决定了以太坊网络生态系统的正常运行
    Gas 用来衡量执行某些动作需要多少“工作量”,这些“工作量”就是为了执行该动作支付给网络的费用额。
通俗理解,Gas 是给矿工的佣金,并以 ETH 支付,无论是交易、执行智能合约并启动 DApps,还是支付数据存储费用,都需要用到 Gas

工作原理

gas工作原理图

  https://upload-images.jianshu.io/upload_images/10765081-263629a993449e90

单位

    1 ETH = 1000 Finney  1千
    1 ETH = 1000000 Szabo   1百万
    1 ETH = 1000000000 Gwei 10亿
    1 ETH = 1000000000000000000 Wei 1百万万亿

组成

    Gas Limit
        Gas Limit 用户愿意为执行某个操作的最大Gas量(最少21,000)
    Gas Price
        Gas Price 是 Gwei 的数量,用户愿意花费于每个 Gas 单位的价钱

创建智能合约的流程

 

 

 

 

 

 

转载于:https://www.cnblogs.com/hankal/p/9455899.html

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值