BZOJ3083 遥远的国度 【树剖】

题目

zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度。当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn完成任务后才能进入遥远的国度继续追杀。

问题是这样的:遥远的国度有n个城市,这些城市之间由一些路连接且这些城市构成了一颗树。这个国度有一个首都,我们可以把这个首都看做整棵树的根,但遥远的国度比较奇怪,首都是随时有可能变为另外一个城市的。遥远的国度的每个城市有一个防御值,有些时候RapiD会使得某两个城市之间的路径上的所有城市的防御值都变为某个值。RapiD想知道在某个时候,如果把首都看做整棵树的根的话,那么以某个城市为根的子树的所有城市的防御值最小是多少。由于RapiD无法解决这个问题,所以他拦住了zcwwzdjn希望他能帮忙。但zcwwzdjn还要追杀sb的zhx,所以这个重大的问题就被转交到了你的手上。

输入格式

第1行两个整数n m,代表城市个数和操作数。
第2行至第n行,每行两个整数 u v,代表城市u和城市v之间有一条路。
第n+1行,有n个整数,代表所有点的初始防御值。
第n+2行一个整数 id,代表初始的首都为id。
第n+3行至第n+m+2行,首先有一个整数opt,如果opt=1,接下来有一个整数id,代表把首都修改为id;如果opt=2,接下来有三个整数p1 p2 v,代表将p1 p2路径上的所有城市的防御值修改为v;如果opt=3,接下来有一个整数 id,代表询问以城市id为根的子树中的最小防御值。

输出格式

对于每个opt=3的操作,输出一行代表对应子树的最小点权值。

输入样例

3 7

1 2

1 3

1 2 3

1

3 1

2 1 1 6

3 1

2 2 2 5

3 1

2 3 3 4

3 1

输出样例

1

2

3

4

提示

对于20%的数据,n<=1000 m<=1000。

对于另外10%的数据,n<=100000,m<=100000,保证修改为单点修改。

对于另外10%的数据,n<=100000,m<=100000,保证树为一条链。

对于另外10%的数据,n<=100000,m<=100000,没有修改首都的操作。

对于100%的数据,n<=100000,m<=100000,0<所有权值<=2^31。

题解

树剖,较为休闲
主要是换根问题,只影响询问结果
如果根与询问节点u的lca不为u,说明根在原树u的子树外,这样子换根后u的子树不变
如果lca为u,那么换根后只有根所在原树u的子树不在换根后u的子树内

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
    while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
    return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[2 * maxn];
inline void build(int u,int v){
    ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
    ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int n,m,val[maxn],capi;
int siz[maxn],dep[maxn],fa[maxn][18],top[maxn],son[maxn],id[maxn],Hash[maxn],cnt;
void dfs1(int u){
    siz[u] = 1;
    REP(i,17) fa[u][i] = fa[fa[u][i - 1]][i - 1];
    Redge(u) if ((to = ed[k].to) != fa[u][0]){
        dep[to] = dep[u] + 1; fa[to][0] = u;
        dfs1(to);
        siz[u] += siz[to];
        if (!son[u] || siz[to] > siz[son[u]]) son[u] = to;
    }
}
void dfs2(int u,int flag){
    id[u] = ++cnt; Hash[cnt] = u;
    top[u] = flag ? top[fa[u][0]] : u;
    if (son[u]) dfs2(son[u],true);
    Redge(u) if ((to = ed[k].to) != fa[u][0] && to != son[u])
        dfs2(to,false);
}
int mn[4 * maxn],tag[4 * maxn];
void pd(int u){
    if (tag[u]) mn[ls] = mn[rs] = tag[ls] = tag[rs] = tag[u],tag[u] = 0;
}
void build(int u,int l,int r){
    if (l == r){
        mn[u] = val[Hash[l]];
        return;
    }
    int mid = l + r >> 1;
    build(ls,l,mid);
    build(rs,mid + 1,r);
    mn[u] = min(mn[ls],mn[rs]);
}
void modify(int u,int l,int r,int L,int R,int v){
    if (l >= L && r <= R){mn[u] = tag[u] = v; return;}
    pd(u);
    int mid = l + r >> 1;
    if (mid >= L) modify(ls,l,mid,L,R,v);
    if (mid < R) modify(rs,mid + 1,r,L,R,v);
    mn[u] = min(mn[ls],mn[rs]);
}
int query(int u,int l,int r,int L,int R){
    if (l >= L && r <= R) return mn[u];
    pd(u);
    int mid = l + r >> 1;
    if (mid >= R) return query(ls,l,mid,L,R);
    else if (mid < L) return query(rs,mid + 1,r,L,R);
    else return min(query(ls,l,mid,L,R),query(rs,mid + 1,r,L,R));
}
int Lca(int u,int v){
    if (dep[u] < dep[v]) swap(u,v);
    if (dep[u] != dep[v]){
        for (int i = 0,d = dep[u] - dep[v] - 1; (1 << i) <= d; i++)
            if (d & (1 << i)) u = fa[u][i];
        if (fa[u][0] == v) return u;
        u = fa[u][0];
    }
    for (int i = 17; i >= 0; i--)
        if (fa[u][i] != fa[v][i]) u = fa[u][i],v = fa[v][i];
    return u;
}
void solve1(int u,int v,int x){
    while (top[u] != top[v]){
        if (dep[top[u]] < dep[top[v]]) swap(u,v);
        modify(1,1,n,id[top[u]],id[u],x);
        u = fa[top[u]][0];
    }
    if (dep[u] > dep[v]) swap(u,v);
    modify(1,1,n,id[u],id[v],x);
}
void solve2(int u){
    if (u == capi) {printf("%d\n",mn[1]); return;}
    int lca = Lca(u,capi);
    if (fa[lca][0] != u) printf("%d\n",query(1,1,n,id[u],id[u] + siz[u] - 1));
    else {
        int L = id[lca] - 1,R = id[lca] + siz[lca];
        printf("%d\n",min(query(1,1,n,1,L),R <= n ? query(1,1,n,R,n) : INF));
    }
}
int main(){
    n = read(); m = read();
    for (int i = 1; i < n; i++) build(read(),read());
    for (int i = 1; i <= n; i++) val[i] = read();
    dfs1(1); dfs2(1,0); build(1,1,n);
    capi = read();
    int opt,u,v;
    while (m--){
        opt = read();
        if (opt == 1) capi = read();
        else if (opt == 2){
            u = read(); v = read();
            solve1(u,v,read());
        }else solve2(read());
    }
    return 0;
}

转载于:https://www.cnblogs.com/Mychael/p/8479898.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值