Berlekamp Massey算法求线性递推式

BM算法求求线性递推式

 

P5487 线性递推+BM算法

  待AC。

 

Poor God Water

  // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛

题意

  God Water喜欢吃Meat, Fish 和 Chocolate,每个小时他会吃一种食物,但有些吃的顺序是危险/不高兴的。求在N小时内他的饮食方案有多少种不同组合。在连续三小时内这些组合是不可行的:

unhappy :
MMM FFF CCC

dangerous :
MCF FCM CMC CFC

 

思路1

  设第 N 小时能吃的饮食方案数为 A[N],根据连续三小时的可能组合,我们可以发现 A[N] 可以由 A[N-1] 和 A[N-2] 递推得到。由于相邻两小时的组合不是独立的,不能利用乘法计数原理。

  用向量 a[N] = (MM, FM, CM, MF, FF, CF, MC, FC, CC) 记录 N 小时的最后两小时所吃的食物状态总的方案数,那么只需要找到矩阵 A,使得 a[N-1] · A = a[N],那么就能用矩阵快速幂解决。

  构造的矩阵如下:
\[ A = \begin{bmatrix} 0&1&1&0&0&0&0&0&0\\ 0&0&0&1&1&1&0&0&0\\ 0&0&0&0&0&0&1&0&1\\ 1&1&1&0&0&0&0&0&0\\ 0&0&0&1&0&1&0&0&0\\ 0&0&0&0&0&0&0&1&1\\ 1&1&0&0&0&0&0&0&0\\ 0&0&0&1&1&0&0&0&0\\ 0&0&0&0&0&0&1&1&0 \end{bmatrix} \]

 

思路2

  使用杜教的BM算法模板,扔进8~10项,调用linear_seq::gao函数直接求 N 项结果。 时间复杂度与矩阵快速幂等同。

 

AC代码1

#include<iostream>
#include<cstdio>
using namespace std;
const int mod = 1e9+7;

typedef long long ll;
struct Mat {
    ll m[9][9];
    ll tot;
    Mat operator*(const Mat& a)const {
        Mat res = {0};
        for(int i=0;i<9;i++) {
            for(int j=0;j<9;j++) {
                for(int k=0;k<9;k++) {
                    res.m[i][j] += m[i][k] * a.m[k][j] % mod;
                    res.m[i][j] %= mod;
                }
                // res.tot =(res.tot + res.m[i][j]) % mod;
            }
        }
        return res;
    }
    ll getSum() const {
        // return tot;
        ll res = 0;
        for(int i=0;i<9;i++)
            for(int j=0;j<9;j++)
                res = (res + m[i][j]) % mod;
        return res;
    }
    void print() const {
        for(int i=0;i<9;i++) {
            for(int j=0;j<9;j++) {
                printf("%lld ", m[i][j]);
            }
            printf("\n");
        }
    }
};

Mat getI() {
    Mat I = {0};
    for(int i=0;i<9;i++)
        I.m[i][i] = 1;
    return I;
}
const Mat I = getI();

Mat getA0() {
    Mat res = {0};
    for(int k=0;k<3;k++)
    for(int i=0;i<3;i++) {
        for(int j=3*i;j<3*i+3;j++)
            res.m[k*3+i][j] = 1;
    }
    res.m[0][0] = 0;
    res.m[2][7] = 0;
    res.m[4][4] = 0;
    res.m[5][6] = 0;
    res.m[6][2] = 0;
    res.m[7][5] = 0;
    res.m[8][8] = 0;
    res.tot = 20;
    return res;
}
const Mat A0 = getA0();


Mat pow_mod(Mat a, ll n) {
    Mat res = I;
    while(n) {
        if(n&1) res = res*a;
        a = a*a;
        n >>= 1;
    }
    return res;
}

ll solve(ll n) {
    if(n==1) return 3;
    else if(n==2) return 9;

    return pow_mod(A0, n-2).getSum();
}

int main() {
    int T; cin>>T;
    while(T--) {
        ll n;
        scanf("%lld", &n);
        printf("%lld\n", solve(n));
    }
    return 0;
}

/*
MFC
3*3*3 = 27
    
unhappy:
MMM
FFF
CCC

dangerous:
MCF
FCM

CMC
CFC

    M F C
MM  0 1 1
MF  1 1 1
MC  1 0 1

FM  1 1 1
FF  1 0 1
FC  0 1 1

CM  1 1 0
CF  1 1 0
CC  1 1 0
*/

 

AC代码2

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;

#define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())

typedef long long ll;
typedef vector<ll> VLL;
const ll mod = 1000000007;

ll powmod(ll a, ll b) {
    ll res=1;a%=mod;
    for(;b;b>>=1) {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
    }
    return res;
}

ll n;
namespace linear_seq {
    const int N = 100010;
    ll res[N], base[N], _c[N], _md[N];

    VLL Md;
    void mul(ll a[], ll b[], int k) {
        for(int i=0;i<k+k;i++)
            _c[i] = 0;
        for(int i=0;i<k;i++)
            if(a[i])
                for(int j=0;j<k;j++)
                    _c[i+j] = (_c[i+j] + a[i]*b[j]%mod) % mod;

        for(int i=k+k-1;i>=k;i--) 
            if(_c[i])
                rep(j,0,SZ(Md))
                    _c[i-k+Md[j]] = (_c[i-k+Md[j]] - _c[i] * _md[Md[j]]%mod) % mod;

        for(int i=0;i<k;i++)
            a[i] = _c[i];
    }

    ll solve(ll n, VLL a, VLL b) {
        ll ans = 0, pnt = 0;
        int k = SZ(a);
        for(int i=0;i<k;i++)
            _md[k-1-i]=-a[i];
        _md[k]=1;

        Md.clear();
        for(int i=0;i<k;i++)
            if(_md[i]!=0) Md.push_back(i);
        for(int i=0;i<k;i++)
            res[i]=base[i]=0;
        res[0]=1;

        while((1ll<<pnt)<=n) pnt++;
        for(int p=pnt;p>=0;p--) {
            mul(res, res, k);
            if((n>>p)&1) {
                for(int i=k-1;i>=0;i--)
                    res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md))
                    res[Md[j]]=(res[Md[j]] - res[k]*_md[Md[j]]%mod) % mod;
            }
        }

        for(int i=0;i<k;i++)
            ans = (ans + res[i]*b[i]%mod) % mod;
        if(ans<0) ans += mod;
        return ans;
    }

    VLL BM(VLL s) {
        VLL C(1,1), B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i]%mod) % mod;
            if(d==0) ++m;
            else if(2*L<=n) {
                VLL T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while(SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i]%mod) % mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c = mod- d*powmod(b, mod-2)%mod;
                while(SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B))
                    C[i+m]=(C[i+m]+c*B[i]%mod) % mod;
                ++m;
            }
        }
        return C;
    }

    ll gao(VLL a, ll n) {
        VLL c = BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c))
            c[i] = (mod-c[i])%mod;
        return solve(n, c, VLL(a.begin(), a.begin()+SZ(c)));
    }
};

int main() {
    /*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/
    vector<int>v;
    v.pb(3);
    v.pb(9);
    v.pb(20);
    v.pb(46);
    v.pb(106);
    v.pb(244);
    v.pb(560);
    v.pb(1286);
    v.pb(2956);
    v.pb(6794);
    int T;
    scanf("%d", &T);
    while(T--){
        scanf("%lld", &n);
        printf("%lld\n", linear_seq::gao(v,n-1));
    }
}

 

转载于:https://www.cnblogs.com/izcat/p/11452539.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MATLAB中实现机械臂的仿真可以使用Robotic System Toolbox来进行。Robotic System Toolbox包含许多工具和函数,可以实现机械臂的建模、控制和仿真。 首先,需要定义机械臂的模型。可以使用robotics.RigidBodyTree类来创建机械臂的刚体树结构。通过添加关节和刚体可以构建机械臂的结构。可以使用函数robotics.RigidBody来创建刚体,并使用函数robotics.Joint来创建关节。 接下来,可以使用robotics.RigidBodyTree类中的函数来定义机械臂的初始状态。可以设置每个关节的初始位置和速度。 然后,可以使用robotics.RigidBodyTree类中的函数来进行机械臂的运动控制。可以使用函数robotics.InverseKinematics来实现逆运动学,根据目标位置和姿态来求解关节角度。可以使用函数robotics.CartesianTrajectory来生成机械臂的轨迹,指定起始和目标位置以及运动时间。 最后,可以使用robotics.RigidBodyTree类中的函数来进行机械臂的仿真。可以使用函数robotics.Rate来指定仿真的频率,然后使用循环来更新机械臂的状态和控制输入,实现机械臂的运动。 以下是一个基本的机械臂仿真的示例代码: ```matlab % 创建机械臂模型 robot = robotics.RigidBodyTree; % 添加机械臂的关节和刚体 % 设置机械臂的初始状态 % 运动控制 % 仿真循环 % 绘制机械臂的运动轨迹 ``` 在实际的机械臂仿真中,可能还需要考虑机械臂的动力学、碰撞检测和路径规划等问题。可以使用Robotic System Toolbox中的其他工具和函数来处理这些问题。
### 回答1: Berlekamp-Massey算法是一种线性复杂度算法,用于在一个序列中出最短的线性递推序列。它可以用来检测线性级别的纠错码,并在检测到错误时纠正这些错误。该算法于1967年由Elwyn Berlekamp和James Massey首先提出。 ### 回答2: Berlekamp-Massey算法线性递推序列的一个求解算法,主要用于加密算法、编码和错误校验码等。 对于一个由$a_0, a_1, a_2, ..., a_n$组成的序列,如果它是一个线性递推序列,则存在$f(x)=f_0+f_1x+f_2x^2+...+f_nx^n$和$g(x)=g_0+g_1x+g_2x^2+...+g_nx^n$满足以下条件: 1. $f(x)a_n+f_1(x)a_{n-1}+f_2(x)a_{n-2}+...+f_n(x)a_0=0$ 2. $f(x)g(x)=1+0x+0x^2+...+0x^{2n}$ 其中$f(x)$和$g(x)$都是多项,系数都属于$GF(2)$域,即所有系数都为$0$或$1$。 Berlekamp-Massey算法的核心思想是通过不断更新推导出$f(x)$多项,从而确定序列是否为线性递推序列。具体操作如下: 1. 初始化$f(x)=a_0$和$g(x)=1$ 2. 设$i=0$,继续下面的步骤。 3. 如果$f(x)$使得$f(x)a_i+f_1(x)a_{i-1}+f_2(x)a_{i-2}+...+f_i(x)a_{i-i}=0$,则跳过下一步。 4. 否则更新$f(x)$和$g(x)$为:$f(x)=f(x)-f_i(x)x^{i-ld}$,$g(x)=g(x)+f_i(x)x^{i-ld}$,其中$ld$是最低位的非零项指数。 5. 如果$i$等于序列长度$n$,则停止,否则将$i$增加1,返回步骤3。 当算法执行结束后,如果$deg(f(x))<n$,则序列是线性递推序列。否则,序列不是线性递推序列。 Berlekamp-Massey算法具有高效的时间复杂度和空间复杂度,并且能够在有限时间内判断序列是否为线性递推序列。由于其可靠性和适用性,该算法在加密、编码、校验等方面得到广泛应用。 ### 回答3: Berlekamp-Massey算法是一种线性复杂度扫描算法,用于寻找给定有限域上的线性递推序列的最短线性递推关系。在密码学、纠错码、伪随机序列等应用中有着广泛的应用。 该算法的基本思想是利用一个长度为m的寄存器序列和一个长度为m的系数序列,去逐步生成原序列,通过比较原序列和生成序列之间的差异,逐步解决递推关系。当序列长度超过m时,就可以使用修改寄存器序列和系数序列来更新序列。在任意时刻,算法都会保持当前序列前r个元素的线性关系,直到找到整个递推。因此,它可以通过线性时间求解整个递推Berlekamp-Massey算法对于极大伪随机序列具有特别的重要性,因为它可以判断一个序列是否为线性复杂度生成,并且可以通过线性时间出其线性递推关系。具体来说,一个序列为线性复杂度生成当且仅当它的线性递推关系的位数达到了序列的长度。在密码学中,这意味着一个暴力破解程序所需要的运算次数会达到指数级。因此,一些密码学应用需要使用Berlekamp-Massey算法对生成的伪随机序列进行测试,以保证其没有线性递推关系,从而更好地保证密码的安全性。 总的来说,Berlekamp-Massey算法是一种重要的算法,在密码学和其他应用中都有广泛的应用和重要性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值