http://acm.hdu.edu.cn/showproblem.php?pid=6598
一开始就觉得是网络流,但是一直都不会怎么建图。
这里要考虑。
每一组边(u,v,a,b,c)建立如下的连接:
(s,u,a),(s,v,a),(u,t,c),(v,t,c),(u,v,a+c-2b)
这样,看看,每次最小割把这个切断的时候,要么切断2a,使得u,v同属于t,要么切断2c,使得u,v同属于s。再或者,斜着切断三条边,合计2a+2c-2b。
那么假如最小割的值是sum,那么 (a+c)-sum/2 就是答案。
上面那个,切断2a的话,会使得最终贡献c,切断2c的话会使得最终贡献a,切断三条边的话会最终贡献b。
那么这样的正确性就是足够显然的。
下次注意b的值是一个奇怪的数字可能就是想说明这个,建立的这条边的容量保证非负。
以前做了几个最大权闭合子图,但是没想到还可以节点之间连接一些边,通过割断节点之间的边巧妙得到“分属不同集合”的贡献。其实也很好理解的,既然最大权闭合子图的时候是割断一条与st相连的边表示同属一个集合的额外贡献,那么这里割断两个点之间的连接就不难理解。
网络流还需要多看看啊。
(既然建图已经知道了正确答案,那……)