https://codeforc.es/contest/1199/problem/D
其实后来想了一下貌似是个线段树的傻逼题。
单调栈是这样思考的,每次单点修改打上一个最终修改的时间戳。每次全体修改就push进去单调栈。首先比新的全体修改的x小的(等的也)全部出栈,这样子单调栈里面就是一个递减的序列,而时间戳是递增的。
最后对于每一个有修改标记的,在时间戳上面二分找到他的下一次修改,那么这个修改绝对就是足够大的。假如没有查找成功,则说明不存在最后一次修改。(可以通过在最后入栈一个0操作来统一),没有修改标记的那就直接赋值最大的全体修改。(相当于对0进行查询)
其实也是nlogn的。常数估计更小。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read() {
int x = 0;
char c = getchar();
for(; c < '0' || c > '9'; c = getchar());
for(; c >= '0' && c <= '9'; c = getchar())
x = (x << 3) + (x << 1) + c - '0';
return x;
}
inline void _write(int x) {
if(x > 9)
_write(x / 10);
putchar(x % 10 + '0');
}
inline void write(int x) {
if(x < 0) {
putchar('-');
x = -x;
}
_write(x);
putchar('\n');
}
const int MAXN=200005;
int n, q;
int a[MAXN],lc[MAXN];
int st1[MAXN],st2[MAXN],stop;
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
n = read();
for(int i = 1; i <= n; ++i)
a[i] = read();
q = read();
for(int qi = 1; qi <= q; qi++) {
int op = read(), p, x;
if(op == 1) {
p = read(), x = read();
a[p] = x;
lc[p] = qi;
} else {
x = read();
while(stop && st1[stop] <= x)
--stop;
st1[++stop] = x;
st2[stop] = qi;
}
}
st1[++stop] = 0;
st2[stop] = q + 1;
for(int i = 1; i <= n; ++i)
a[i] = max(a[i], st1[lower_bound(st2 + 1, st2 + 1 + stop, lc[i]) - st2]);
for(int i = 1; i <= n; ++i)
printf("%d%c", a[i], " \n"[i == n]);
}
其实当时也在想,每次lazy更新2操作不就可以了吗?这样就直接是线段树。每次对点更新把一路上的lazy标记push下去,然后到叶子的时候把这个失效的lazy给清空了。query的时候记得要max上lazy,因为有一些叶子并没有被1操作对点更新但是lazy也确实传到这个叶子了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXM = 200000;
int a[MAXM + 5];
int lazy[(MAXM << 2) + 5];
inline void push_down(int o, int l, int r) {
if(lazy[o]) {
lazy[o << 1] = max(lazy[o << 1], lazy[o]);
lazy[o << 1 | 1] = max(lazy[o << 1 | 1], lazy[o]);
lazy[o] = 0;
}
}
void update1(int o, int l, int r, int x, int v) {
if(x <= l && r <= x) {
lazy[o]=0;
a[x] = v;
return;
} else {
push_down(o, l, r);
int m = (l + r) >> 1;
if(x <= m)
update1(o << 1, l, m, x, v);
if(x >= m + 1)
update1(o << 1 | 1, m + 1, r, x, v);
}
}
void update2(int o, int l, int r, int v) {
lazy[o] = max(lazy[o], v);
return;
}
int query(int o, int l, int r, int x) {
if(x <= l && r <= x) {
return max(a[x], lazy[o]);
} else {
push_down(o, l, r);
int m = (l + r) >> 1;
if(x <= m)
return query(o << 1, l, m, x);
if(x >= m + 1)
return query(o << 1 | 1, m + 1, r, x);
}
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out", "w", stdout);
#endif // Yinku
int n;
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
int q;
scanf("%d", &q);
for(int i = 1; i <= q; ++i) {
int op;
scanf("%d", &op);
if(op == 1) {
int x, v;
scanf("%d%d", &x, &v);
update1(1, 1, n, x, v);
} else {
int x;
scanf("%d", &x);
update2(1, 1, n, x);
}
}
for(int i = 1; i <= n; ++i) {
a[i] = query(1, 1, n, i);
printf("%d%c", a[i], " \n"[i == n]);
}
}