演员
把这个当成dp算了半天,各种姿势,好吧,就当练习一下树dp。
假如是每个节点的层数之和,按照dp[i][j]为从i点出发获得j科技的最小费用dp是比较好的。
改了改居然也可以过。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
vector<pair<int, int> > E[50];
int d[50];
int f[50];
int n, W;
int dp[50][500][3];
//dp[i][j][0]表示i点是叶子的获取总共j点科技需要的最低价格
//dp[i][j][1]表示从i点出发并且i不是叶子的获取总共j点科技需要的最低价格
//dp[i][j][2]表示dp[i][j][1]拷贝
//科技不会超过400
const int INF = 0x3f3f3f3f;
void dfs(int r, int p, int dep, int w) {
memset(dp[r], INF, sizeof(dp[r]));
//只走到自己不需要任何价格
dp[r][dep][0] = 0;
//不获取任何科技点也不需要任何价格
dp[r][0][1]=0;
for(auto e : E[r]) {
int vi = e.first, wi = e.second;
dfs(vi, r, dep + 1, wi);
}
if(f[r]==-1)
return;
int maxk=300;
for(int k=340;k>=0;--k){
if(dp[r][k][0]!=INF||dp[r][k][1]!=INF){
maxk=k;
//cout<<"maxk="<<maxk<<endl;
break;
}
}
for(int j = 0; j <= 340; ++j)
dp[f[r]][j][2]=dp[f[r]][j][1];
for(int k =maxk; k >= 0; --k) {
for(int j = k; j <= 340; ++j){
dp[f[r]][j][2]=min(dp[f[r]][j][2],dp[f[r]][j-k][1]+dp[r][k][0]+w);
dp[f[r]][j][2]=min(dp[f[r]][j][2],dp[f[r]][j-k][1]+dp[r][k][1]+w);
}
}
for(int j = 0; j <= 340; ++j)
dp[f[r]][j][1]=dp[f[r]][j][2];
/*for(int v = 0; v <= 12; ++v) {
printf("dp[%c][%d][0]=%d\n", r + 'A', v, dp[r][v][0]);
printf("dp[%c][%d][1]=%d\n", r + 'A', v, dp[r][v][1]);
printf("dp[%c][%d][0]=%d\n", f[r] + 'A', v, dp[f[r]][v][0]);
printf("dp[%c][%d][1]=%d\n\n", f[r] + 'A', v, dp[f[r]][v][1]);
}*/
return;
}
bool vis[50];
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
while(~scanf("%d%d", &n, &W)) {
for(int i = 0; i < 26; ++i) {
E[i].clear();
d[i] = 0;
vis[i] = 0;
}
if(n == 1) {
puts("0");
continue;
}
for(int i = 1; i <= n - 1; ++i) {
char s[20], t[20];
int w;
scanf("%s%s%d", s, t, &w);
E[s[0] - 'A'].push_back({t[0] - 'A', w});
d[t[0] - 'A']++;
f[t[0] - 'A'] = s[0] - 'A';
vis[s[0] - 'A'] = vis[t[0] - 'A'] = true;
}
int r = -1;
for(int i = 0; i < 26; ++i) {
if(vis[i] && d[i] == 0)
r = i;
}
f[r]=-1;
dfs(r, -1, 0, 0);
int ans = 0;
for(int i = 340; i >= 0; --i) {
if(dp[r][i][1] <= W || dp[r][i][0] <= W) {
ans = max(ans, i);
}
}
printf("%d\n", ans);
}
return 0;
}
/*
8 11
A B 8
B C 3
C D 1
D E 1
E F 1
A R 2
R W 9
*/